Ess-For-H8152.tex 19/7/2006 18: 2 Page 711
ESSENTIAL FORMULAE 711Tangents and normalsEquation of tangent to curvey=f(x) at the point
(x 1 ,y 1 ) is:y−y 1 =m(x−x 1 )wherem=gradient of curve at (x 1 ,y 1 ).Equation of normal to curvey=f(x) at the point
(x 1 ,y 1 ) is:y−y 1 =−1
m(x−x 1 )Partial differentiationTotal differentialIfz=f(u,v,..), then the total differential,dz=∂z
∂udu+∂z
∂vdv+....Rate of changeIfz=f(u,v,..) anddu
dt,dv
dt, ... denote the rate of
change ofu,v, .. respectively, then the rate of change
ofz,dz
dt=∂z
∂u·du
dt+∂z
∂v·dv
dt+...Small changesIfz=f(u,v,..) andδx,δy, .. denote small changes in
x,y, .. respectively, then the corresponding change,δz≈∂z
∂xδx+∂z
∂yδy+....To determine maxima, minima and saddle
points for functions of two variables: Given
z=f(x,y),(i) determine∂z
∂xand∂z
∂y(ii) for stationary points,∂z
∂x=0 and∂z
∂y=0,(iii) solve the simultaneous equations∂z
∂x= 0and∂z
∂y=0 for x and y, which gives theco-ordinates of the stationary points,(iv) determine∂^2 z
∂x^2,∂^2 z
∂y^2and∂^2 z
∂x∂y
(v) for each of the co-ordinates of the station-
ary points, substitute values ofxandyinto
∂^2 z
∂x^2,∂^2 z
∂y^2and∂^2 z
∂x∂yand evaluate each,(vi) evaluate(
∂^2 z
∂x∂y) 2
for each stationary point,(vii) substitute the values of∂^2 z
∂x^2,∂^2 z
∂y^2and∂^2 z
∂x∂yintothe equation=(
∂^2 z
∂x∂y) 2
−(
∂^2 z
∂x^2)(
∂^2 z
∂y^2)and evaluate,(viii) (a) if
> 0 then the stationary point is asaddle
point(b) if
< 0 and∂^2 z
∂x^2< 0 , then the stationary
point is amaximum point, and(c) if
< 0 and∂^2 z
∂x^2> 0 , then the stationary
point is aminimum point