Higher Engineering Mathematics

(Greg DeLong) #1

Ess-For-H8152.tex 19/7/2006 18: 2 Page 710


710 ESSENTIAL FORMULAE

yorf(x)

dy
dx

orf′(x)

cosec−^1 f(x)

−f′(x)

f(x)


[f(x)]^2 − 1

cot−^1

x
a

−a
a^2 +x^2

cot−^1 f(x)

−f′(x)
1 +[f(x)]^2

sinh−^1

x
a

1

x^2 +a^2

sinh−^1 f(x)

f′(x)

[f(x)]^2 + 1

cosh−^1

x
a

1

x^2 −a^2

cosh−^1 f(x)

f′(x)

[f(x)]^2 − 1

tanh−^1

x
a

a
a^2 −x^2

tanh−^1 f(x)

f′(x)
1 −[f(x)]^2

sech−^1

x
a

−a
x


a^2 −x^2

sech−^1 f(x)

−f′(x)
f(x)


1 −[f(x)]^2

cosech−^1

x
a

−a

x


x^2 +a^2

cosech−^1 f(x)

−f′(x)

f(x)


[f(x)]^2 + 1

coth−^1

x
a

a
a^2 −x^2

coth−^1 f(x)

f′(x)
1 −[f(x)]^2

Product rule:

Wheny=uvanduandvare functions ofxthen:

dy
dx

=u

dv
dx

+v

du
dx

Quotient rule:

Wheny=

u
v

anduandvare functions ofxthen:

dy
dx

=

v

du
dx

−u

dv
dx
v^2

Function of a function:

Ifuis a function ofxthen:
dy
dx

=

dy
du

×

du
dx

Parametric differentiation

Ifxandyare both functions ofθ, then:

dy
dx

=

dy

dx

and

d^2 y
dx^2

=

d

(
dy
dx

)

dx

Implicit function:

d
dx

[f(y)]=

d
dy

[f(y)]×

dy
dx

Maximum and minimum values:

Ify=f(x) then

dy
dx

= 0 for stationary points.

Let a solution of

dy
dx

=0bex=a; if the value of

d^2 y
dx^2

whenx=ais:positive, the point is aminimum,
negative, the point is amaximum.

Velocity and acceleration

If distancex=f(t), then

velocity v=f′(t)or

dx
dt

and

acceleration a=f′′(t)or

d^2 x
dt^2
Free download pdf