Ess-For-H8152.tex 19/7/2006 18: 2 Page 710
710 ESSENTIAL FORMULAE
yorf(x)
dy
dx
orf′(x)
cosec−^1 f(x)
−f′(x)
f(x)
√
[f(x)]^2 − 1
cot−^1
x
a
−a
a^2 +x^2
cot−^1 f(x)
−f′(x)
1 +[f(x)]^2
sinh−^1
x
a
1
√
x^2 +a^2
sinh−^1 f(x)
f′(x)
√
[f(x)]^2 + 1
cosh−^1
x
a
1
√
x^2 −a^2
cosh−^1 f(x)
f′(x)
√
[f(x)]^2 − 1
tanh−^1
x
a
a
a^2 −x^2
tanh−^1 f(x)
f′(x)
1 −[f(x)]^2
sech−^1
x
a
−a
x
√
a^2 −x^2
sech−^1 f(x)
−f′(x)
f(x)
√
1 −[f(x)]^2
cosech−^1
x
a
−a
x
√
x^2 +a^2
cosech−^1 f(x)
−f′(x)
f(x)
√
[f(x)]^2 + 1
coth−^1
x
a
a
a^2 −x^2
coth−^1 f(x)
f′(x)
1 −[f(x)]^2
Product rule:
Wheny=uvanduandvare functions ofxthen:
dy
dx
=u
dv
dx
+v
du
dx
Quotient rule:
Wheny=
u
v
anduandvare functions ofxthen:
dy
dx
=
v
du
dx
−u
dv
dx
v^2
Function of a function:
Ifuis a function ofxthen:
dy
dx
=
dy
du
×
du
dx
Parametric differentiation
Ifxandyare both functions ofθ, then:
dy
dx
=
dy
dθ
dx
dθ
and
d^2 y
dx^2
=
d
dθ
(
dy
dx
)
dx
dθ
Implicit function:
d
dx
[f(y)]=
d
dy
[f(y)]×
dy
dx
Maximum and minimum values:
Ify=f(x) then
dy
dx
= 0 for stationary points.
Let a solution of
dy
dx
=0bex=a; if the value of
d^2 y
dx^2
whenx=ais:positive, the point is aminimum,
negative, the point is amaximum.
Velocity and acceleration
If distancex=f(t), then
velocity v=f′(t)or
dx
dt
and
acceleration a=f′′(t)or
d^2 x
dt^2