Higher Engineering Mathematics

(Greg DeLong) #1
MACLAURIN’S SERIES 73

A

L’Hopital’s rulewill enable us to determine such
limits when the differential coefficients of the numer-
ator and denominator can be found.
L’Hopital’s rule states:


lim
x→a

{
f(x)
g(x)

}
=lim
x→a

{
f′(x)
g′(x)

}

providedg′(a)= 0

It can happen that lim
x→a


{
f′(x)
g′(x)

}
is still

0
0

; if so, the

numerator and denominator are differentiated again
(and again) until a non-zero value is obtained for the
denominator.
The following worked problems demonstrate how
L’Hopital’s rule is used. Refer to Chapter 27 for
methods of differentiation.


Problem 14. Determine lim
x→ 1

{
x^2 + 3 x− 4
x^2 − 7 x+ 6

}

The first step is to substitutex=1 into both numer-


ator and denominator. In this case we obtain^00 .Itis
only when we obtain such a result that we then use
L’Hopital’s rule. Hence applying L’Hopital’s rule,


lim
x→ 1


{
x^2 + 3 x− 4
x^2 − 7 x+ 6

}
=lim
x→ 1

{
2 x+ 3
2 x− 7

}

i.e.both numerator and
denominator have
been differentiated

=

5
− 5

=− 1

Problem 15. Determine lim
x→ 0

{
sinx−x
x^2

}

Substitutingx=0gives


lim
x→ 0

{
sinx−x
x^2

}
=

sin 0− 0
0

=

0
0

Applying L’Hopital’s rule gives


lim
x→ 0

{
sinx−x
x^2

}
=lim
x→ 0

{
cosx− 1
2 x

}

Substitutingx=0gives


cos 0− 1
0

=

1 − 1
0

=

0
0

again

Applying L’Hopital’s rule again gives

lim
x→ 0

{
cosx− 1
2 x

}
=lim
x→ 0

{
−sinx
2

}
= 0

Problem 16. Determine lim
x→ 0

{
x−sinx
x−tanx

}

Substitutingx=0gives

lim
x→ 0

{
x−sinx
x−tanx

}
=

0 −sin 0
0 −tan 0

=

0
0

Applying L’Hopital’s rule gives

lim
x→ 0

{
x−sinx
x−tanx

}
=lim
x→ 0

{
1 −cosx
1 −sec^2 x

}

Substitutingx=0gives

lim
x→ 0

{
1 −cosx
1 −sec^2 x

}
=

1 −cos 0
1 −sec^20

=

1 − 1
1 − 1

=

0
0

again

Applying L’Hopital’s rule gives

lim
x→ 0

{
1 −cosx
1 −sec^2 x

}
=lim
x→ 0

{
sinx
(−2 secx)(secxtanx)

}

=lim
x→ 0

{
sinx
−2 sec^2 xtanx

}

Substitutingx=0gives

sin 0
−2 sec^2 0 tan 0

=

0
0

again

Applying L’Hopital’s rule gives

lim
x→ 0

{
sinx
−2 sec^2 xtanx

}

=lim
x→ 0


⎪⎪

⎪⎪

cosx
(−2 sec^2 x)(sec^2 x)
+(tanx)(−4 sec^2 xtanx)


⎪⎪

⎪⎪

using the product rule

Substitutingx=0gives

cos 0
−2 sec^40 −4 sec^2 0 tan^20

=

1
− 2 − 0

=−

1
2
Free download pdf