Higher Engineering Mathematics

(Greg DeLong) #1

74 NUMBER AND ALGEBRA


Hence lim
x→ 0


{
x−sinx
x−tanx

}
=−

1
2

Now try the following exercise.


Exercise 38 Further problems on limiting
values

Determine the following limiting values


  1. lim
    x→ 1


{
x^3 − 2 x+ 1
2 x^3 + 3 x− 5

}[
1
9

]


  1. lim
    x→ 0


{
sinx
x

}
[1]


  1. lim
    x→ 0


{
ln(1+x)
x

}
[1]


  1. lim
    x→ 0


{
x^2 −sin 3x
3 x+x^2

}
[−1]


  1. lim
    θ→ 0


{
sinθ−θcosθ
θ^3

}[
1
3

]


  1. lim
    t→ 1


{
lnt
t^2 − 1

}[
1
2

]


  1. lim
    x→ 0


{
sinhx−sinx
x^3

}[
1
3

]


  1. lim
    θ→π 2


{
sinθ− 1
ln sinθ

}
[ 1 ]


  1. lim
    t→ 0


{
sect− 1
tsint

}[
1
2

]
Free download pdf