MESSAGE-1 and MESSAGE-
2
Goossens O, Vanhavere F, Leys N, et al.
Radiation dosimetry for microbial experiments
in the International Space Station using
different etched track and luminescent
detectors. Radiation Protection Dosimetry. April
27, 2006;120(1-4):433-437. doi:
10.1093/rpd/nci652.
ESA
MESSAGE-1 and MESSAGE-
2
Leys N, Baatout S, De Boever, et al. Gene
expression in Ralstonia metallidurans CH34 in
spaceflight. European Symposium on
Environmental Biotechnology; 2004.
ESA
Micro-2 and Micro-2A Kim W, Tengra FK, Young Z, et al. Spaceflight
promotes biofilm formation by Pseudomonas
Aeruginosa. PLoS ONE. 2013;8(4):e62437.
doi:10.1371/journal.pone.0062437.
NASA
Micro-2 and Micro-2A Kim W, Tengra FK, Shong J, et al. Effect of
spaceflight on Pseudomonas aeruginosa final
cell density is modulated by nutrient and
oxygen availability. BMC Microbiology.
November 6, 2013;13:241. doi: 10.1186/1471-
2180 - 13 - 241.
NASA
Microbe Crabbe A, Nielson-Preiss S, Woolley CM, et al.
Spaceflight enhances cell aggregation and
random budding in Candida albicans. PLOS ONE.
December 4, 2013;8:e80677. doi:
10.1371/journal.pone.0080677.
NASA
Microbe Crabbe A, Schurr MJ, Ott CM, et al.
Transcriptional and proteomic responses of
Pseudomonas aeruginosa PAO1 to spaceflight
conditions involve Hfq regulation and reveal a
role for oxygen. Applied and Environmental
Microbiology. 2011;77(4):1221-1230. doi:
10.1128/AEM.01582- 10.
NASA
Microbe Crabbe A, Pycke B, Van Houdt R, et al. Response
of Pseudomonas aeruginosa to low shear
modeled microgravity involves AlgU regulation.
Environmental Microbiology. 2010;12(6):1545-
64.