130_notes.dvi

(Frankie) #1

6.6.2 Verify Energy Operator


E(op)

1


2 π ̄h

ei(p^0 x−E^0 t)/ ̄h=

1


2 π ̄h

i ̄h

−iE 0
̄h

ei(p^0 x−E^0 t)/ ̄h

=E 0

1


2 π ̄h

ei(p^0 x−E^0 t)/ ̄h

6.7 Examples


6.7.1 Expectation Value of Momentum in a Given State


A particle is in the stateψ(x) =


( 1

2 πα

) 1 / 4

eik^0 xe−
x 4 α^2

. What is the expectation value ofp?


We will use the momentum operator to get this result.


〈p〉ψ = 〈ψ|p|ψ〉=

∫∞

−∞

ψ∗(x)p(op)ψ(x)dx

=

∫∞

−∞

(

1

2 πα

) 1 / 4

e−ik^0 xe−

x 4 α^2 ̄h
i


∂x

(

1

2 πα

) 1 / 4

eik^0 xe−

x 4 α^2
dx

=

(

1

2 πα

) 1 / 2

̄h
i

∫∞

−∞

e−ik^0 xe−

x 4 α^2 ∂
∂x

eik^0 xe−

x 4 α^2
dx

=

(

1

2 πα

) 1 / 2

̄h
i

∫∞

−∞

e−ik^0 xe−

x 4 α^2

(

ik 0 eik^0 xe−

x 4 α^2

2 x
4 α

eik^0 xe−

x 42 α

)

dx

=

(

1

2 πα

) 1 / 2

̄h
i

∫∞

−∞

(

ik 0 e−

x 22 α

2 x
4 α
e−

x 2 α^2

)

dx

The second term gives zero because the integral is odd aboutx= 0.


〈ψ|p|ψ〉 =

(

1

2 πα

) 1 / 2

̄h
i

∫∞

−∞

(

ik 0 e−

x 22 α)
dx

〈ψ|p|ψ〉 =

(

1

2 πα

) 1 / 2

̄hk 0


2 πα= ̄hk 0

Excellent.


6.7.2 Commutator ofEandt


Again use the crutch of keeping a wave function on the right to avoidmistakes.


[E,t]ψ(x,t) =

(

i ̄h


∂t

t−ti ̄h


∂t

)

ψ(x,t)
Free download pdf