= i ̄hψ(x,t) +(
i ̄ht∂
∂t−i ̄ht∂
∂t)
ψ(x,t)= i ̄hψ(x,t)Removing the wave function, we have the commutator.
[E,t] =i ̄h6.7.3 Commutator ofEandx.
Again use the crutch of keeping a wave function on the right to avoidmistakes.
[E,x]ψ(x,t) =(
i ̄h∂
∂tx−xi ̄h∂
∂t)
ψ(x,t)=
(
i ̄hx∂
∂t−i ̄hx∂
∂t)
ψ(x,t) = 0Since∂x∂t= 0.
6.7.4 Commutator ofpandxn
We can use the commutator [p,x] to help us. Remember thatpx=xp+ [p,x].
[p,xn] = pxn−xnp
= (px)xn−^1 −xnp
= xpxn−^1 + [p,x]xn−^1 −xnp
= x(px)xn−^2 + [p,x]xn−^1 −xnp
= x^2 pxn−^2 +x[p,x]xn−^2 + [p,x]xn−^1 −xnp
= x^2 pxn−^2 + 2[p,x]xn−^1 −xnp
= x^3 pxn−^3 + 3[p,x]xn−^1 −xnp
= xnp+n[p,x]xn−^1 −xnp= n[p,x]xn−^1 =n̄h
ixn−^1It is usually not wise to use the differential operators and a wave function crutch to compute
commutators like this one.Use the known basic commutators when you can.Nevertheless,
we can compute it that way.
[p,xn]ψ=̄h
i∂
∂xxnψ−xn̄h
i∂
∂xψ=̄h
inxn−^1 ψ[p,xn] =̄h
inxn−^1It works pretty well for this particular case, but not if I havepto some power...