130_notes.dvi

(Frankie) #1
= i ̄hψ(x,t) +

(

i ̄ht


∂t

−i ̄ht


∂t

)

ψ(x,t)

= i ̄hψ(x,t)

Removing the wave function, we have the commutator.


[E,t] =i ̄h

6.7.3 Commutator ofEandx.


Again use the crutch of keeping a wave function on the right to avoidmistakes.


[E,x]ψ(x,t) =

(

i ̄h


∂t

x−xi ̄h


∂t

)

ψ(x,t)

=

(

i ̄hx


∂t

−i ̄hx


∂t

)

ψ(x,t) = 0

Since∂x∂t= 0.


6.7.4 Commutator ofpandxn


We can use the commutator [p,x] to help us. Remember thatpx=xp+ [p,x].


[p,xn] = pxn−xnp
= (px)xn−^1 −xnp
= xpxn−^1 + [p,x]xn−^1 −xnp
= x(px)xn−^2 + [p,x]xn−^1 −xnp
= x^2 pxn−^2 +x[p,x]xn−^2 + [p,x]xn−^1 −xnp
= x^2 pxn−^2 + 2[p,x]xn−^1 −xnp
= x^3 pxn−^3 + 3[p,x]xn−^1 −xnp
= xnp+n[p,x]xn−^1 −xnp

= n[p,x]xn−^1 =n

̄h
i

xn−^1

It is usually not wise to use the differential operators and a wave function crutch to compute
commutators like this one.Use the known basic commutators when you can.Nevertheless,
we can compute it that way.


[p,xn]ψ=

̄h
i


∂x

xnψ−xn

̄h
i


∂x

ψ=

̄h
i

nxn−^1 ψ

[p,xn] =

̄h
i

nxn−^1

It works pretty well for this particular case, but not if I havepto some power...

Free download pdf