6.6.2 Verify Energy Operator
E(op)
1
√
2 π ̄h
ei(p^0 x−E^0 t)/ ̄h=
1
√
2 π ̄h
i ̄h
−iE 0
̄h
ei(p^0 x−E^0 t)/ ̄h
=E 0
1
√
2 π ̄h
ei(p^0 x−E^0 t)/ ̄h
6.7 Examples
6.7.1 Expectation Value of Momentum in a Given State
A particle is in the stateψ(x) =
( 1
2 πα
) 1 / 4
eik^0 xe−
x 4 α^2
. What is the expectation value ofp?
We will use the momentum operator to get this result.
〈p〉ψ = 〈ψ|p|ψ〉=
∫∞
−∞
ψ∗(x)p(op)ψ(x)dx
=
∫∞
−∞
(
1
2 πα
) 1 / 4
e−ik^0 xe−
x 4 α^2 ̄h
i
∂
∂x
(
1
2 πα
) 1 / 4
eik^0 xe−
x 4 α^2
dx
=
(
1
2 πα
) 1 / 2
̄h
i
∫∞
−∞
e−ik^0 xe−
x 4 α^2 ∂
∂x
eik^0 xe−
x 4 α^2
dx
=
(
1
2 πα
) 1 / 2
̄h
i
∫∞
−∞
e−ik^0 xe−
x 4 α^2
(
ik 0 eik^0 xe−
x 4 α^2
−
2 x
4 α
eik^0 xe−
x 42 α
)
dx
=
(
1
2 πα
) 1 / 2
̄h
i
∫∞
−∞
(
ik 0 e−
x 22 α
−
2 x
4 α
e−
x 2 α^2
)
dx
The second term gives zero because the integral is odd aboutx= 0.
〈ψ|p|ψ〉 =
(
1
2 πα
) 1 / 2
̄h
i
∫∞
−∞
(
ik 0 e−
x 22 α)
dx
〈ψ|p|ψ〉 =
(
1
2 πα
) 1 / 2
̄hk 0
√
2 πα= ̄hk 0
Excellent.
6.7.2 Commutator ofEandt
Again use the crutch of keeping a wave function on the right to avoidmistakes.
[E,t]ψ(x,t) =
(
i ̄h
∂
∂t
t−ti ̄h
∂
∂t
)
ψ(x,t)