6.6.2 Verify Energy Operator
E(op)1
√
2 π ̄hei(p^0 x−E^0 t)/ ̄h=1
√
2 π ̄hi ̄h−iE 0
̄hei(p^0 x−E^0 t)/ ̄h=E 0
1
√
2 π ̄hei(p^0 x−E^0 t)/ ̄h6.7 Examples
6.7.1 Expectation Value of Momentum in a Given State
A particle is in the stateψ(x) =
( 1
2 πα) 1 / 4
eik^0 xe−
x 4 α^2. What is the expectation value ofp?
We will use the momentum operator to get this result.
〈p〉ψ = 〈ψ|p|ψ〉=∫∞
−∞ψ∗(x)p(op)ψ(x)dx=
∫∞
−∞(
1
2 πα) 1 / 4
e−ik^0 xe−x 4 α^2 ̄h
i∂
∂x(
1
2 πα) 1 / 4
eik^0 xe−x 4 α^2
dx=
(
1
2 πα) 1 / 2
̄h
i∫∞
−∞e−ik^0 xe−x 4 α^2 ∂
∂xeik^0 xe−x 4 α^2
dx=
(
1
2 πα) 1 / 2
̄h
i∫∞
−∞e−ik^0 xe−x 4 α^2(
ik 0 eik^0 xe−x 4 α^2
−2 x
4 αeik^0 xe−x 42 α)
dx=
(
1
2 πα) 1 / 2
̄h
i∫∞
−∞(
ik 0 e−x 22 α
−2 x
4 α
e−x 2 α^2)
dxThe second term gives zero because the integral is odd aboutx= 0.
〈ψ|p|ψ〉 =(
1
2 πα) 1 / 2
̄h
i∫∞
−∞(
ik 0 e−x 22 α)
dx〈ψ|p|ψ〉 =(
1
2 πα) 1 / 2
̄hk 0√
2 πα= ̄hk 0Excellent.
6.7.2 Commutator ofEandt
Again use the crutch of keeping a wave function on the right to avoidmistakes.
[E,t]ψ(x,t) =(
i ̄h∂
∂tt−ti ̄h∂
∂t)
ψ(x,t)