130_notes.dvi

(Frankie) #1

10.6.3 The expectation value ofxin the state√^12 (u 0 +u 1 ).


1

2

〈u 0 +u 1 |x|u 0 +u 1 〉 =

1

2


̄h
2 mω

〈u 0 +u 1 |A+A†|u 0 +u 1 〉

=


̄h
8 mω

〈u 0 +u 1 |Au 0 +Au 1 +A†u 0 +A†u 1 〉

=


̄h
8 mω

〈u 0 +u 1 |0 +


1 u 0 +


1 u 1 +


2 u 2 〉

=


̄h
8 mω

(


1 〈u 0 |u 0 〉+


1 〈u 0 |u 1 〉

+


2 〈u 0 |u 2 〉+


1 〈u 1 |u 0 〉
+


1 〈u 1 |u 1 〉+


2 〈u 1 |u 2 〉)

=


̄h
8 mω

(1 + 1)

=


̄h
2 mω

10.6.4 The expectation value of^12 mω^2 x^2 in eigenstate


The expectation ofx^2 will have some nonzero terms.


〈un|x^2 |un〉 =
̄h
2 mω

〈un|AA+AA†+A†A+A†A†|un〉

=

̄h
2 mω

〈un|AA†+A†A|un〉

We could drop theAAterm and theA†A†term since they will produce 0 when the dot product is
taken.


〈un|x^2 |un〉 =
̄h
2 mω

(〈un|


n+ 1Aun+1〉+〈un|


nA†un− 1 〉)

=

̄h
2 mω

(〈un|


n+ 1


n+ 1un〉+〈un|


n


nun〉)

=

̄h
2 mω

((n+ 1) +n) =

(

n+

1

2

)

̄h

With this we can compute the expected value of the potential energy.


〈un|

1

2

mω^2 x^2 |un〉=

1

2

mω^2

(

n+

1

2

)

̄h

=

1

2

(

n+

1

2

)

̄hω=

1

2

En
Free download pdf