10.6.3 The expectation value ofxin the state√^12 (u 0 +u 1 ).
1
2
〈u 0 +u 1 |x|u 0 +u 1 〉 =
1
2
√
̄h
2 mω
〈u 0 +u 1 |A+A†|u 0 +u 1 〉
=
√
̄h
8 mω
〈u 0 +u 1 |Au 0 +Au 1 +A†u 0 +A†u 1 〉
=
√
̄h
8 mω
〈u 0 +u 1 |0 +
√
1 u 0 +
√
1 u 1 +
√
2 u 2 〉
=
√
̄h
8 mω
(
√
1 〈u 0 |u 0 〉+
√
1 〈u 0 |u 1 〉
+
√
2 〈u 0 |u 2 〉+
√
1 〈u 1 |u 0 〉
+
√
1 〈u 1 |u 1 〉+
√
2 〈u 1 |u 2 〉)
=
√
̄h
8 mω
(1 + 1)
=
√
̄h
2 mω
10.6.4 The expectation value of^12 mω^2 x^2 in eigenstate
The expectation ofx^2 will have some nonzero terms.
〈un|x^2 |un〉 =
̄h
2 mω
〈un|AA+AA†+A†A+A†A†|un〉
=
̄h
2 mω
〈un|AA†+A†A|un〉
We could drop theAAterm and theA†A†term since they will produce 0 when the dot product is
taken.
〈un|x^2 |un〉 =
̄h
2 mω
(〈un|
√
n+ 1Aun+1〉+〈un|
√
nA†un− 1 〉)
=
̄h
2 mω
(〈un|
√
n+ 1
√
n+ 1un〉+〈un|
√
n
√
nun〉)
=
̄h
2 mω
((n+ 1) +n) =
(
n+
1
2
)
̄h
mω
With this we can compute the expected value of the potential energy.
〈un|
1
2
mω^2 x^2 |un〉=
1
2
mω^2
(
n+
1
2
)
̄h
mω
=
1
2
(
n+
1
2
)
̄hω=
1
2
En