10.6.5 The expectation value of p
2
2 min eigenstate
The expectation value of p
2
2 mis
〈un|
p^2
2 m
|un〉 =
− 1
2 m
m ̄hω
2
〈un|−AA†−A†A|un〉
=
̄hω
4
〈un|AA†+A†A|un〉
=
̄hω
4
((n+ 1) +n) =
1
2
En
(See the previous section for a more detailed computation of the same kind.)
10.6.6 Time Development Example
Start off in the state att= 0.
ψ(t= 0) =
1
√
2
(u 1 +u 2 )
Now put in the simple time dependence of the energy eigenstates,e−iEt/h ̄.
ψ(t) =
1
√
2
(u 1 e−i
(^32) ωt
+u 2 e−i
(^52) ωt
) =
1
√
2
e−i
(^32) ωt
(u 1 +e−iωtu 2 )
We can compute the expectation value ofp.
〈ψ|p|ψ〉 = −i
√
m ̄hω
2
1
2
〈u 1 +e−iωtu 2 |A−A†|u 1 +e−iωtu 2 〉
=
√
m ̄hω
2
1
2 i
(
〈u 1 |A|u 2 〉e−iωt−〈u 2 |A†|u 1 〉eiωt
)
=
√
m ̄hω
2
1
2 i
(√
2 e−iωt−
√
2 eiωt
)
= −
√
m ̄hωsin(ωt)
10.7 Sample Test Problems
- A 1D harmonic oscillator is in a linear combination of the energy eigenstates
ψ=
√
2
3
u 0 −i
√
1
3
u 1
Find the expected value ofp.
Answer