130_notes.dvi

(Frankie) #1

10.6.5 The expectation value of p


2
2 min eigenstate

The expectation value of p


2
2 mis

〈un|

p^2
2 m

|un〉 =

− 1

2 m

m ̄hω
2

〈un|−AA†−A†A|un〉

=

̄hω
4
〈un|AA†+A†A|un〉

=

̄hω
4

((n+ 1) +n) =

1

2

En

(See the previous section for a more detailed computation of the same kind.)


10.6.6 Time Development Example


Start off in the state att= 0.


ψ(t= 0) =

1


2

(u 1 +u 2 )

Now put in the simple time dependence of the energy eigenstates,e−iEt/h ̄.


ψ(t) =

1


2

(u 1 e−i

(^32) ωt
+u 2 e−i
(^52) ωt
) =


1


2

e−i

(^32) ωt
(u 1 +e−iωtu 2 )
We can compute the expectation value ofp.
〈ψ|p|ψ〉 = −i



m ̄hω
2

1

2

〈u 1 +e−iωtu 2 |A−A†|u 1 +e−iωtu 2 〉

=


m ̄hω
2

1

2 i

(

〈u 1 |A|u 2 〉e−iωt−〈u 2 |A†|u 1 〉eiωt

)

=


m ̄hω
2

1

2 i

(√

2 e−iωt−


2 eiωt

)

= −


m ̄hωsin(ωt)

10.7 Sample Test Problems



  1. A 1D harmonic oscillator is in a linear combination of the energy eigenstates


ψ=


2

3

u 0 −i


1

3

u 1

Find the expected value ofp.
Answer
Free download pdf