130_notes.dvi

(Frankie) #1

11.7 Examples


11.7.1 Time Development Example


Start off in the state.


ψ(t= 0) =

1


2

(u 1 +u 2 )

In the Schr ̈odinger picture,


ψ(t) =

1


2

(u 1 e−i

(^32) ωt
+u 2 e−i
(^52) ωt
) =


1


2

e−i

(^32) ωt
(u 1 +e−iωtu 2 )
We can compute the expectation value ofx.
〈ψ|x|ψ〉 =


1

2


̄h
2 mω
〈u 1 +eiωtu 2 |A+A†|u 1 +eiωtu 2 〉

=

1

2


̄h
2 mω

(

〈u 1 |A|u 2 〉e−iωt+〈u 2 |A†|u 1 〉eiωt

)

=

1

2


̄h
2 mω

(√

2 e−iωt+


2 eiωt

)

=


̄h

cos(ωt)

In the Heisenberg picture


〈ψ|x(t)|ψ〉=

1

2


̄h
2 mω

〈ψ|e−iωtA+eiωtA†|ψ〉

This gives the same answer with about the same amount of work.


11.8 Sample Test Problems



  1. Calculate the commutator [Lx,Lz] whereLx=ypz−zpyandLz=xpy−ypx. State the
    uncertainty principle forLxandLz.
    Answer


[Lx,Lz] = [ypz−zpy,xpy−ypx] =x[y,py]pz+z[py,y]px

=

̄h
i

(−xpz+zpx) =i ̄h(xpz−zpx) =−i ̄hLy

∆Lx∆Lz ≥
i
2

〈[Lx,Lz]〉=
i
2

(−i ̄h)〈Ly〉=
̄h
2

〈Ly〉

2.*A particle of massmis in a1 dimensional potentialV(x). Calculate the rate of change
of the expected values ofxandp, (d〈dtx〉andddt〈p〉). Your answer will obviously depend on the
Free download pdf