θ
φ
x
y
z
r
We now proceed to calculate the angular momentum operators in spherical coordinates. The first
step is to write the∂x∂iin spherical coordinates. We use the chain rule and the above transformation
from Cartesian to spherical. We have useddcosθ=−sinθdθanddtanφ=cos^12 φdφ. Ultimately
all of these should be written in the sperical cooridnates but its convenient to usexfor example in
intermediate steps of the calculation.
∂
∂x
=
∂r
∂x
∂
∂r
+
∂cosθ
∂x
∂
∂cosθ
+
∂tanφ
∂x
∂
∂tanφ
=
x
r
∂
∂r
+
−xz
r^3
− 1
sinθ
∂
∂θ
−
y
x^2
cos^2 φ
∂
∂φ
= sinθcosφ
∂
∂r
+
1
r
sinθcosφcosθ
1
sinθ
∂
∂θ
−
1
r
sinθsinφ
sin^2 θcos^2 φ
cos^2 φ
∂
∂φ
= sinθcosφ
∂
∂r
+
1
r
cosφcosθ
∂
∂θ
−
1
r
sinφ
sinθ
∂
∂φ
∂
∂y
=
∂r
∂y
∂
∂r
+
∂cosθ
∂y
∂
∂cosθ
+
∂tanφ
∂y
∂
∂tanφ
=
y
r
∂
∂r
+
−yz
r^3
− 1
sinθ
∂
∂θ
+
1
x
cos^2 φ
∂
∂φ
= sinθsinφ
∂
∂r
+
1
r
sinθsinφcosθ
1
sinθ
∂
∂θ
+
1
r
1
sinθcosφ
cos^2 φ
∂
∂φ
= sinθsinφ
∂
∂r
+
1
r
sinφcosθ
∂
∂θ
+
1
r
cosφ
sinθ
∂
∂φ
∂
∂z
=
∂r
∂z
∂
∂r
+
∂cosθ
∂z
∂
∂cosθ
+
∂tanφ
∂z
∂
∂tanφ
=
z
r
∂
∂r
+
(
1
r
−
z^2
r^3
)
− 1
sinθ
∂
∂θ
= cosθ
∂
∂r
+
1
r
(
1 −cos^2 θ
)− 1
sinθ
∂
∂θ
= cosθ
∂
∂r
−
1
r
sinθ
∂
∂θ