130_notes.dvi

(Frankie) #1
θ

φ

x

y

z

r

We now proceed to calculate the angular momentum operators in spherical coordinates. The first
step is to write the∂x∂iin spherical coordinates. We use the chain rule and the above transformation


from Cartesian to spherical. We have useddcosθ=−sinθdθanddtanφ=cos^12 φdφ. Ultimately
all of these should be written in the sperical cooridnates but its convenient to usexfor example in
intermediate steps of the calculation.



∂x

=

∂r
∂x


∂r

+

∂cosθ
∂x


∂cosθ

+

∂tanφ
∂x


∂tanφ

=

x
r


∂r

+

−xz
r^3

− 1

sinθ


∂θ


y
x^2

cos^2 φ


∂φ

= sinθcosφ


∂r

+

1

r
sinθcosφcosθ

1

sinθ


∂θ


1

r

sinθsinφ
sin^2 θcos^2 φ

cos^2 φ


∂φ

= sinθcosφ


∂r

+

1

r
cosφcosθ


∂θ


1

r

sinφ
sinθ


∂φ

∂y

=

∂r
∂y


∂r

+

∂cosθ
∂y


∂cosθ

+

∂tanφ
∂y


∂tanφ

=
y
r


∂r

+

−yz
r^3

− 1

sinθ


∂θ

+

1

x

cos^2 φ


∂φ

= sinθsinφ


∂r

+

1

r

sinθsinφcosθ

1

sinθ


∂θ

+

1

r

1

sinθcosφ

cos^2 φ


∂φ

= sinθsinφ


∂r

+

1

r

sinφcosθ


∂θ

+

1

r

cosφ
sinθ


∂φ

∂z

=

∂r
∂z


∂r

+

∂cosθ
∂z


∂cosθ

+

∂tanφ
∂z


∂tanφ

=
z
r


∂r

+

(

1

r


z^2
r^3

)

− 1

sinθ


∂θ

= cosθ


∂r

+

1

r

(

1 −cos^2 θ

)− 1

sinθ


∂θ
= cosθ


∂r


1

r

sinθ


∂θ
Free download pdf