Note that~p 6 =m~v. The momentum conjugate to~rincludes momentum in the field. We now time
differentiate this equation and write it in terms of the components ofa vector.
dpi
dt=mdvi
dt−
e
cdAi
dt.Similarly for the other Hamilton equation (in each vector component)p ̇i=−∂H∂xi, we have
dpi
dt= ̇pi=−
e
mc(
~p+
e
cA~
)
·
∂A~
∂xi+e
∂φ~
∂xi.
We now have two equations fordpdtiderived from the two Hamilton equations. We equate the two
right hand sides yielding
mai=m
dvi
dt=−
e
mc(
~p+
e
cA~
)
·
∂A~
∂xi+e
∂φ
∂xi+
e
cdAi
dt.
mai=−e
mc
(m~v)·∂A~
∂xi
+e∂φ
∂xi+
e
cdAi
dt.
Thetotal time derivativeofAhas one part fromAchanging with time and another from the
particle moving andAchanging in space.
dA~
dt=
∂A~
∂t+
(
~v·∇~)
A~
so that
Fi=mai=−e
c~v·∂A~
∂xi+e∂φ
∂xi+
e
c∂Ai
∂t+
e
c(
~v·∇~)
Ai.We notice the electric field term in this equation.
e∂φ
∂xi+
e
c∂Ai
∂t=−eEiFi=mai=−eEi+
e
c[
−~v·∂A~
∂xi+
(
~v·∇~)
Ai]
.
Let’s work with the other two terms to see if they give us the rest ofthe Lorentz Force.
e
c[
(
~v·∇~)
Ai−~v·∂A~
∂xi]
=
e
c[
vj∂
∂xjAi−vj∂Aj
∂xi]
=
e
cvj[
∂Ai
∂xj−
∂Aj
∂xi]
We need only prove that
(
~v×B~
)
i=vj(
∂Aj
∂xi−
∂Ai
∂xj)
.
To prove this, we will expand the expression using the totally antisymmetric tensor.
(
~v×B~)
i=
(
~v×(
∇×A~
))
i=vj(
∂An
∂xmεmnk)
εjki=vj∂An
∂xm(εmnkεjki)=−vj∂An
∂xm(εmnkεjik) =−vj∂An
∂xm(δmjδni−δmiδnj) = +vj(
∂Aj
∂xi−
∂Ai
∂xj