Q.E.D.
So we have
Fi=−eEi−
e
c
(
~v×B~
)
i
which is the Lorentz force law. So this is the right Hamiltonian for an electron in a electromagnetic
field. We now need to quantize it.
20.5.3 The Hamiltonian in terms of B
Start with theHamiltonian
H=
1
2 μ
(
~p+
e
c
A~
) 2
−eφ
Now write theSchr ̈odinger equation.
1
2 μ
(
̄h
i
∇~+e
c
A~
)
·
(
̄h
i
∇~ψ+e
c
Aψ~
)
= (E+eφ)ψ
− ̄h^2
2 μ
∇^2 ψ−
ie ̄h
2 μc
∇·~
(
Aψ~
)
−
ie ̄h
2 μc
A~·∇~ψ+ e
2
2 mc^2
A^2 ψ = (E+eφ)ψ
− ̄h^2
2 μ
∇^2 ψ−
ie ̄h
2 μc
(
∇·~ A~
)
ψ−
ie ̄h
μc
A~·∇~ψ+ e
2
2 mc^2
A^2 ψ = (E+eφ)ψ
The second term vanishes in theCoulomb gaugei.e.,∇·~ A~= 0, so
−
̄h^2
2 μ
∇^2 ψ−
ie ̄h
μc
A~·∇~ψ+ e
2
2 mc^2
A^2 ψ= (E+eφ)ψ
Now for constantBz, wechoose the vector potential
A~=−^1
2
~r×B~
since
(
∇×~ A~
)
k
=
∂
∂xi
Ajεijk=−
1
2
∂
∂xi
(xmBnεmnj)εijk
= −
1
2
δimBnεmnjεijk=−
1
2
Bnεinjεijk
=
1
2
Bn
∑
i
∑
j
εijnεijk
=^1
2
Bk
∑
i
∑
j
ε^2 ijk
=Bk
it gives the right field and satisfies the Coulomb gauge condition.
Substituting back, we obtain
− ̄h^2
2 μ
∇^2 ψ+
ie ̄h
2 μc
~r×B~·∇~ψ+
e^2
8 mc^2
(
~r×B~
) 2
ψ= (E+eφ)ψ
Now let’s work on thevector arithmetic.
(
~r×B~·∇~ψ
)
=riBjεijk
∂ψ
∂xk
=−Bj
(
ri
∂ψ
∂xk
εikj
)
=−B~·~r×∇~ψ=−
i
̄h
B~·~Lψ