Q.E.D.
So we have
Fi=−eEi−
e
c(
~v×B~)
i
which is the Lorentz force law. So this is the right Hamiltonian for an electron in a electromagnetic
field. We now need to quantize it.
20.5.3 The Hamiltonian in terms of B
Start with theHamiltonian
H=1
2 μ(
~p+e
cA~
) 2
−eφNow write theSchr ̈odinger equation.
1
2 μ(
̄h
i∇~+e
cA~
)
·
(
̄h
i∇~ψ+e
cAψ~)
= (E+eφ)ψ− ̄h^2
2 μ
∇^2 ψ−ie ̄h
2 μc∇·~
(
Aψ~)
−
ie ̄h
2 μc
A~·∇~ψ+ e2
2 mc^2
A^2 ψ = (E+eφ)ψ− ̄h^2
2 μ∇^2 ψ−ie ̄h
2 μc(
∇·~ A~
)
ψ−ie ̄h
μcA~·∇~ψ+ e2
2 mc^2A^2 ψ = (E+eφ)ψThe second term vanishes in theCoulomb gaugei.e.,∇·~ A~= 0, so
−
̄h^2
2 μ∇^2 ψ−ie ̄h
μcA~·∇~ψ+ e2
2 mc^2A^2 ψ= (E+eφ)ψNow for constantBz, wechoose the vector potential
A~=−^1
2~r×B~since
(
∇×~ A~
)
k=
∂
∂xiAjεijk=−1
2
∂
∂xi(xmBnεmnj)εijk= −
1
2
δimBnεmnjεijk=−1
2
Bnεinjεijk=
1
2
Bn
∑
i∑
jεijnεijk
=^1
2
Bk
∑
i∑
jε^2 ijk
=Bkit gives the right field and satisfies the Coulomb gauge condition.
Substituting back, we obtain
− ̄h^2
2 μ∇^2 ψ+
ie ̄h
2 μc~r×B~·∇~ψ+
e^2
8 mc^2(
~r×B~) 2
ψ= (E+eφ)ψNow let’s work on thevector arithmetic.
(
~r×B~·∇~ψ
)
=riBjεijk
∂ψ
∂xk=−Bj(
ri
∂ψ
∂xkεikj)
=−B~·~r×∇~ψ=−
i
̄hB~·~Lψ