130_notes.dvi

(Frankie) #1
Q.E.D.

So we have
Fi=−eEi−


e
c

(

~v×B~

)

i
which is the Lorentz force law. So this is the right Hamiltonian for an electron in a electromagnetic
field. We now need to quantize it.


20.5.3 The Hamiltonian in terms of B


Start with theHamiltonian


H=

1

2 μ

(

~p+

e
c

A~

) 2

−eφ

Now write theSchr ̈odinger equation.


1
2 μ

(

̄h
i

∇~+e
c

A~

)

·

(

̄h
i

∇~ψ+e
c

Aψ~

)

= (E+eφ)ψ

− ̄h^2
2 μ
∇^2 ψ−

ie ̄h
2 μc

∇·~

(

Aψ~

)


ie ̄h
2 μc
A~·∇~ψ+ e

2
2 mc^2
A^2 ψ = (E+eφ)ψ

− ̄h^2
2 μ

∇^2 ψ−

ie ̄h
2 μc

(

∇·~ A~

)

ψ−

ie ̄h
μc

A~·∇~ψ+ e

2
2 mc^2

A^2 ψ = (E+eφ)ψ

The second term vanishes in theCoulomb gaugei.e.,∇·~ A~= 0, so



̄h^2
2 μ

∇^2 ψ−

ie ̄h
μc

A~·∇~ψ+ e

2
2 mc^2

A^2 ψ= (E+eφ)ψ

Now for constantBz, wechoose the vector potential


A~=−^1
2

~r×B~

since
(
∇×~ A~


)

k

=


∂xi

Ajεijk=−

1

2


∂xi

(xmBnεmnj)εijk

= −

1

2

δimBnεmnjεijk=−

1

2

Bnεinjεijk

=

1

2

Bn




i


j

εijnεijk


=^1

2

Bk




i


j

ε^2 ijk


=Bk

it gives the right field and satisfies the Coulomb gauge condition.


Substituting back, we obtain


− ̄h^2
2 μ

∇^2 ψ+
ie ̄h
2 μc

~r×B~·∇~ψ+
e^2
8 mc^2

(

~r×B~

) 2

ψ= (E+eφ)ψ

Now let’s work on thevector arithmetic.
(
~r×B~·∇~ψ


)

=riBjεijk
∂ψ
∂xk

=−Bj

(

ri
∂ψ
∂xk

εikj

)

=−B~·~r×∇~ψ=−
i
̄h

B~·~Lψ
Free download pdf