130_notes.dvi

(Frankie) #1

Note that~p 6 =m~v. The momentum conjugate to~rincludes momentum in the field. We now time
differentiate this equation and write it in terms of the components ofa vector.


dpi
dt

=m

dvi
dt


e
c

dAi
dt.

Similarly for the other Hamilton equation (in each vector component)p ̇i=−∂H∂xi, we have


dpi
dt

= ̇pi=−
e
mc

(

~p+
e
c

A~

)

·

∂A~

∂xi

+e
∂φ~
∂xi

.

We now have two equations fordpdtiderived from the two Hamilton equations. We equate the two
right hand sides yielding


mai=m
dvi
dt

=−

e
mc

(

~p+
e
c

A~

)

·

∂A~

∂xi

+e
∂φ
∂xi

+

e
c

dAi
dt

.

mai=−

e
mc
(m~v)·

∂A~

∂xi
+e

∂φ
∂xi

+

e
c

dAi
dt

.

Thetotal time derivativeofAhas one part fromAchanging with time and another from the
particle moving andAchanging in space.


dA~
dt

=

∂A~

∂t

+

(

~v·∇~

)

A~

so that


Fi=mai=−

e
c

~v·

∂A~

∂xi

+e

∂φ
∂xi

+

e
c

∂Ai
∂t

+

e
c

(

~v·∇~

)

Ai.

We notice the electric field term in this equation.


e

∂φ
∂xi

+

e
c

∂Ai
∂t

=−eEi

Fi=mai=−eEi+
e
c

[

−~v·

∂A~

∂xi

+

(

~v·∇~

)

Ai

]

.

Let’s work with the other two terms to see if they give us the rest ofthe Lorentz Force.


e
c

[

(

~v·∇~

)

Ai−~v·

∂A~

∂xi

]

=

e
c

[

vj


∂xj

Ai−vj

∂Aj
∂xi

]

=

e
c

vj

[

∂Ai
∂xj


∂Aj
∂xi

]

We need only prove that
(
~v×B~


)

i

=vj

(

∂Aj
∂xi


∂Ai
∂xj

)

.

To prove this, we will expand the expression using the totally antisymmetric tensor.


(
~v×B~

)

i

=

(

~v×

(

∇×A~

))

i

=vj

(

∂An
∂xm

εmnk

)

εjki=vj

∂An
∂xm

(εmnkεjki)

=−vj

∂An
∂xm

(εmnkεjik) =−vj

∂An
∂xm

(δmjδni−δmiδnj) = +vj

(

∂Aj
∂xi


∂Ai
∂xj

)

.
Free download pdf