Note that~p 6 =m~v. The momentum conjugate to~rincludes momentum in the field. We now time
differentiate this equation and write it in terms of the components ofa vector.
dpi
dt
=m
dvi
dt
−
e
c
dAi
dt.
Similarly for the other Hamilton equation (in each vector component)p ̇i=−∂H∂xi, we have
dpi
dt
= ̇pi=−
e
mc
(
~p+
e
c
A~
)
·
∂A~
∂xi
+e
∂φ~
∂xi
.
We now have two equations fordpdtiderived from the two Hamilton equations. We equate the two
right hand sides yielding
mai=m
dvi
dt
=−
e
mc
(
~p+
e
c
A~
)
·
∂A~
∂xi
+e
∂φ
∂xi
+
e
c
dAi
dt
.
mai=−
e
mc
(m~v)·
∂A~
∂xi
+e
∂φ
∂xi
+
e
c
dAi
dt
.
Thetotal time derivativeofAhas one part fromAchanging with time and another from the
particle moving andAchanging in space.
dA~
dt
=
∂A~
∂t
+
(
~v·∇~
)
A~
so that
Fi=mai=−
e
c
~v·
∂A~
∂xi
+e
∂φ
∂xi
+
e
c
∂Ai
∂t
+
e
c
(
~v·∇~
)
Ai.
We notice the electric field term in this equation.
e
∂φ
∂xi
+
e
c
∂Ai
∂t
=−eEi
Fi=mai=−eEi+
e
c
[
−~v·
∂A~
∂xi
+
(
~v·∇~
)
Ai
]
.
Let’s work with the other two terms to see if they give us the rest ofthe Lorentz Force.
e
c
[
(
~v·∇~
)
Ai−~v·
∂A~
∂xi
]
=
e
c
[
vj
∂
∂xj
Ai−vj
∂Aj
∂xi
]
=
e
c
vj
[
∂Ai
∂xj
−
∂Aj
∂xi
]
We need only prove that
(
~v×B~
)
i
=vj
(
∂Aj
∂xi
−
∂Ai
∂xj
)
.
To prove this, we will expand the expression using the totally antisymmetric tensor.
(
~v×B~
)
i
=
(
~v×
(
∇×A~
))
i
=vj
(
∂An
∂xm
εmnk
)
εjki=vj
∂An
∂xm
(εmnkεjki)
=−vj
∂An
∂xm
(εmnkεjik) =−vj
∂An
∂xm
(δmjδni−δmiδnj) = +vj
(
∂Aj
∂xi
−
∂Ai
∂xj