130_notes.dvi

(Frankie) #1

Minimize the energy.


〈ψ|H|ψ〉=


d^3 r 1 d^3 r 2 φ∗ 100 (~r 1 )φ∗ 100 (~r 2 )

[

p^21
2 m


Ze^2
r 1

+

p^22
2 m


Ze^2
r 2

+

e^2
|~r 1 −~r 2 |

]

φ 100 (~r 1 )φ 100 (~r 2 )

We can recycle our previous work to do these integrals. First, replace theZinH 1 with aZ∗and
put in a correction term. This makes theH 1 part just a hydrogen energy. The correction term is
just a constant overrso we can also write that in terms of the hydrogen ground state energy.


x =


d^3 r 1 φ∗ 100

(

p^21
2 m


Ze^2
r 1

)

φ 100

=


d^3 r 1 φ∗ 100

(

p^21
2 m


Z∗e^2
r 1

+

(Z∗−Z)e^2
r 1

)

φ 100

= Z∗^2 (− 13 .6 eV) + (Z∗−Z)e^2


d^3 r 1 |φ 100 |^2

1

r 1

= Z∗^2 (− 13 .6 eV) + (Z∗−Z)e^2

Z∗

a 0

= −Z∗^2

1

2

α^2 mc^2 +Z∗(Z∗−Z)α^2 mc^2

= α^2 mc^2

(

Z∗(Z∗−Z)−

1

2

Z∗^2

)

Then we reuse the perturbation theory calculation to get theV term.


〈ψ|H|ψ〉 = 2[x] +

5

4

Z∗

(

1

2

α^2 mc^2

)

= −

1

2

α^2 mc^2

[

2 Z∗^2 − 4 Z∗(Z∗−Z)−

5

4

Z∗

]

= −

1

2

α^2 mc^2

[

− 2 Z∗^2 + 4ZZ∗−

5

4

Z∗

]

Use the variational principle to determine the bestZ∗.


∂〈ψ|H|ψ〉
∂Z∗

= 0 ⇒ − 4 Z∗+ 4Z−

5

4

= 0

Z∗=Z−

5

16

Putting these together we get our estimate of the ground state energy.


〈ψ|H|ψ〉 = −

1

2

α^2 mc^2 Z∗

[

− 2 Z∗+ 4Z−

5

4

]

= −

1

2

α^2 mc^2 (Z−

5

16

)

[

− 2 Z+

5

8

+ 4Z−

5

4

]

= −

1

2

α^2 mc^2

[

2

(

Z−

5

16

) 2 ]

=− 77 .38 eV

(really− 78. 975 eV).

Now we are within a few percent. We could use more parameters for better results.

Free download pdf