130_notes.dvi

(Frankie) #1



A 1 (−E+mc^2 ) +pzc
A 2 (−E+mc^2 ) + (px+ipy)c
−A 1 pzc−A 2 (px−ipy)c+ (E+mc^2 )
−A 1 (px+ipy)c+A 2 pzc



= 0

A 1 =

−pzc
−E+mc^2

A 2 =

−(px+ipy)c
−E+mc^2



0

0

p^2 c^2
−E+mc^2 + (E+mc

(^2) )
−−E−+pzmcc 2 (px+ipy)c+−−(pEx++mcipy 2 )cpzc





= 0




0

0

−E^2 +(mc^2 )^2 +p^2 c^2
−E+mc^2
0



= 0

E^2 =p^2 c^2 + (mc^2 )^2

u~p=N





−pzc
−E+mc^2
−(px+ipy)c
−E+mc^2
1
0





u~p=0=N




0

0

1

0




This reduces to the spin up “negative energy” solution for a particleat rest as the momentum goes
to zero. The full solution is


ψ
(3)
~p =N





−pzc
−E+mc^2
−(px+ipy)c
−E+mc^2
1
0




e

i(~p·~x−Et)/ ̄h

withEbeing a negative number. We will eventually understand the “negative energy” solutions in
terms of anti-electrons otherwise known as positrons.


Finally, the“negative energy”, spin down solutionfollows the same pattern.





−E+mc^20 pzc (px−ipy)c
0 −E+mc^2 (px+ipy)c −pzc
−pzc −(px−ipy)c E+mc^20
−(px+ipy)c pzc 0 E+mc^2







A 1

A 2

0

1



= 0

ψ~p(4)=N





−(px−ipy)c
−Ep+zmcc^2
−E+mc^2
0
1




e

i(~p·~x−Et)/ ̄h

withEbeing a negative number.

Free download pdf