cosh^2
χ
2
−sinh^2
χ
2
=
1
4
((e
χ 2
+e
− 2 χ
)^2 −(e
χ 2
−e
− 2 χ
)^2 )
=
1
4
(eχ+ 2 +e−χ−eχ+ 2−e−χ) = 1
γ 1 coshχ+iγ 4 sinhχ = a 1 νγν
aμν=
coshχ 0 0 isinhχ
0 1 0 0
0 0 1 0
−isinhχ 0 0 coshχ
γ 1 coshχ+iγ 4 sinhχ=γ 1 coshχ+iγ 4 sinhχ
That checks forγ 1. Now, tryγ 4.
γ 4 cosh^2
χ
2
+iγ 4 γ 1 γ 4 cosh
χ
2
sinh
χ
2
−iγ 1 γ 4 γ 4 cosh
χ
2
sinh
χ
2
+γ 1 γ 4 γ 4 γ 1 γ 4 sinh^2
χ
2
= a 4 νγν
γ 4 cosh^2
χ
2
−iγ 1 cosh
χ
2
sinh
χ
2
−iγ 1 cosh
χ
2
sinh
χ
2
+γ 4 sinh^2
χ
2
= −isinhχγ 1 + coshχγ 4
γ 4 cosh^2
χ
2
− 2 iγ 1 cosh
χ
2
sinh
χ
2
+γ 4 sinh^2
χ
2
= −isinhχγ 1 + coshχγ 4
γ 4 coshχ−iγ 1 sinhχ = −isinhχγ 1 + coshχγ 4
That one also checks. As a last test, tryγ 2.
γ 2 cosh^2
χ
2
+iγ 2 γ 1 γ 4 cosh
χ
2
sinh
χ
2
−iγ 1 γ 4 γ 2 cosh
χ
2
sinh
χ
2
+γ 1 γ 4 γ 2 γ 1 γ 4 sinh^2
χ
2
= γ 2
γ 2 cosh^2
χ
2
+iγ 2 γ 1 γ 4 cosh
χ
2
sinh
χ
2
−iγ 2 γ 1 γ 4 cosh
χ
2
sinh
χ
2
−γ 2 sinh^2
χ
2
= a 2 νγν
γ 2 = γ 2
The Dirac equation is therefore shown to beinvariant under boosts along thexidirection if
we transform the Dirac spinor according toψ′=Sboostψwith the matrix
Sboost= cosh
χ
2
+iγiγ 4 sinh
χ
2
and tanhχ=β.
The pure rotation about the z axis should also be verified.
(
cos
θ
2
+γ 1 γ 2 sin
θ
2
)− 1
γμ
(
cos
θ
2
+γ 1 γ 2 sin
θ
2
)
= aμνγν
(
cos
θ
2
−γ 1 γ 2 sin
θ
2
)
γμ
(
cos
θ
2
+γ 1 γ 2 sin
θ
2
)
= aμνγν
γμcos^2
θ
2
+γμγ 1 γ 2 cos
θ
2
sin
θ
2
−γ 1 γ 2 γμcos
θ
2
sin
θ
2
−γ 1 γ 2 γμγ 1 γ 2 sin^2
θ
2
= aμνγν