130_notes.dvi

(Frankie) #1
cosh^2

χ
2

−sinh^2

χ
2

=

1

4

((e

χ 2
+e

− 2 χ
)^2 −(e

χ 2
−e

− 2 χ
)^2 )

=

1

4

(eχ+ 2 +e−χ−eχ+ 2−e−χ) = 1
γ 1 coshχ+iγ 4 sinhχ = a 1 νγν

aμν=




coshχ 0 0 isinhχ
0 1 0 0
0 0 1 0
−isinhχ 0 0 coshχ




γ 1 coshχ+iγ 4 sinhχ=γ 1 coshχ+iγ 4 sinhχ

That checks forγ 1. Now, tryγ 4.


γ 4 cosh^2


χ
2
+iγ 4 γ 1 γ 4 cosh

χ
2
sinh

χ
2
−iγ 1 γ 4 γ 4 cosh

χ
2
sinh

χ
2
+γ 1 γ 4 γ 4 γ 1 γ 4 sinh^2

χ
2
= a 4 νγν

γ 4 cosh^2

χ
2
−iγ 1 cosh

χ
2
sinh

χ
2
−iγ 1 cosh

χ
2
sinh

χ
2
+γ 4 sinh^2

χ
2
= −isinhχγ 1 + coshχγ 4

γ 4 cosh^2
χ
2

− 2 iγ 1 cosh
χ
2

sinh
χ
2

+γ 4 sinh^2
χ
2

= −isinhχγ 1 + coshχγ 4
γ 4 coshχ−iγ 1 sinhχ = −isinhχγ 1 + coshχγ 4

That one also checks. As a last test, tryγ 2.


γ 2 cosh^2
χ
2

+iγ 2 γ 1 γ 4 cosh
χ
2

sinh
χ
2

−iγ 1 γ 4 γ 2 cosh
χ
2

sinh
χ
2

+γ 1 γ 4 γ 2 γ 1 γ 4 sinh^2
χ
2

= γ 2

γ 2 cosh^2

χ
2

+iγ 2 γ 1 γ 4 cosh

χ
2

sinh

χ
2

−iγ 2 γ 1 γ 4 cosh

χ
2

sinh

χ
2

−γ 2 sinh^2

χ
2

= a 2 νγν
γ 2 = γ 2

The Dirac equation is therefore shown to beinvariant under boosts along thexidirection if
we transform the Dirac spinor according toψ′=Sboostψwith the matrix


Sboost= cosh

χ
2

+iγiγ 4 sinh

χ
2

and tanhχ=β.


The pure rotation about the z axis should also be verified.


(
cos

θ
2

+γ 1 γ 2 sin

θ
2

)− 1

γμ

(

cos

θ
2

+γ 1 γ 2 sin

θ
2

)

= aμνγν
(
cos

θ
2

−γ 1 γ 2 sin

θ
2

)

γμ

(

cos

θ
2

+γ 1 γ 2 sin

θ
2

)

= aμνγν

γμcos^2

θ
2

+γμγ 1 γ 2 cos

θ
2

sin

θ
2

−γ 1 γ 2 γμcos

θ
2

sin

θ
2

−γ 1 γ 2 γμγ 1 γ 2 sin^2

θ
2

= aμνγν
Free download pdf