130_notes.dvi

(Frankie) #1
x′ 1 = x 1 coshχ+ix 4 sinhχ
x′ = γx+βγi(ict)
x′ 4 = x 4 coshχ−ix 1 sinhχ

We verify that a boost along theidirection is like a rotation in thei4 plane through an angleiχ.


We need tofind the transformation matricesS that satisfy the equationS−^1 γμS=γνaμν
for the Dirac equation to be covariant. Recalling that the 4 component equivalent ofσzis Σz=
[γ 1 ,γ 2 ]
2 i =


γ 1 γ 2
i , we will show that these matrices are (for a rotation in the xy plane and a boost in
the x direction).


Srot = cos
θ
2

+γ 1 γ 2 sin
θ
2
Sboost = cosh

χ
2

+iγ 1 γ 4 sinh

χ
2

Note that this is essentially the transformation that we derived forrotations of spin one-half states
extended to 4 components. For the case of the boost the angle is nowiχ.


Letsverify that this choice works for a boost.


(
cosh
χ
2

+iγ 1 γ 4 sinh
χ
2

)− 1

γμ

(

cosh
χ
2

+iγ 1 γ 4 sinh
χ
2

)

= aμνγν
(
cosh
−χ
2

+iγ 1 γ 4 sinh
−χ
2

)

γμ

(

cosh
χ
2

+iγ 1 γ 4 sinh
χ
2

)

= aμνγν
(
cosh
χ
2

−iγ 1 γ 4 sinh
χ
2

)

γμ

(

cosh
χ
2

+iγ 1 γ 4 sinh
χ
2

)

= aμνγν

cosh
χ
2


γμcosh
χ
2

+ cosh
χ
2

γμiγ 1 γ 4 sinh
χ
2

−iγ 1 γ 4 sinh
χ
2

γμcosh
χ
2

−iγ 1 γ 4 sinh
χ
2

γμiγ 1 γ 4 sinh
χ
2

= aμνγν

γμcosh^2

χ
2

+iγμγ 1 γ 4 cosh

χ
2

sinh

χ
2

−iγ 1 γ 4 γμcosh

χ
2

sinh

χ
2

+γ 1 γ 4 γμγ 1 γ 4 sinh^2

χ
2

= aμνγν

The equation we must satisfy can be checked for eachγmatrix. First checkγ 1. The operations with
theγmatrices all come from the anticommutator,{γμ,γν}= 2δμν, which tells us that the square
of any gamma matrix is one and that commuting a pair of (unequal) matrices changes the sign.


γ 1 cosh^2

χ
2

+iγ 1 γ 1 γ 4 cosh

χ
2

sinh

χ
2

−iγ 1 γ 4 γ 1 cosh

χ
2

sinh

χ
2

+γ 1 γ 4 γ 1 γ 1 γ 4 sinh^2

χ
2

= a 1 νγν

γ 1 cosh^2

χ
2

+iγ 4 cosh

χ
2

sinh

χ
2

+iγ 4 cosh

χ
2

sinh

χ
2

+γ 1 sinh^2

χ
2

= a 1 νγν

γ 1 cosh^2

χ
2
+ 2iγ 4 cosh

χ
2
sinh

χ
2
+γ 1 sinh^2

χ
2
= a 1 νγν

cosh^2


χ
2

+ sinh^2

χ
2

=

1

4

((e

χ 2
+e

− 2 χ
)^2 + (e

χ 2
−e

− 2 χ
)^2 ) =

1

4

(eχ+ 2 +e−χ+eχ−2 +e−χ)

=

1

2

(eχ+e−χ) = coshχ

cosh

χ
2

sinh

χ
2

=

1

4

((e

χ 2
+e

− 2 χ
)(e

χ 2
−e

− 2 χ
)) =

1

4

(eχ−e−χ) =

1

2

sinhχ
Free download pdf