x′ 1 = x 1 coshχ+ix 4 sinhχ
x′ = γx+βγi(ict)
x′ 4 = x 4 coshχ−ix 1 sinhχ
We verify that a boost along theidirection is like a rotation in thei4 plane through an angleiχ.
We need tofind the transformation matricesS that satisfy the equationS−^1 γμS=γνaμν
for the Dirac equation to be covariant. Recalling that the 4 component equivalent ofσzis Σz=
[γ 1 ,γ 2 ]
2 i =
γ 1 γ 2
i , we will show that these matrices are (for a rotation in the xy plane and a boost in
the x direction).
Srot = cos
θ
2
+γ 1 γ 2 sin
θ
2
Sboost = cosh
χ
2
+iγ 1 γ 4 sinh
χ
2
Note that this is essentially the transformation that we derived forrotations of spin one-half states
extended to 4 components. For the case of the boost the angle is nowiχ.
Letsverify that this choice works for a boost.
(
cosh
χ
2
+iγ 1 γ 4 sinh
χ
2
)− 1
γμ
(
cosh
χ
2
+iγ 1 γ 4 sinh
χ
2
)
= aμνγν
(
cosh
−χ
2
+iγ 1 γ 4 sinh
−χ
2
)
γμ
(
cosh
χ
2
+iγ 1 γ 4 sinh
χ
2
)
= aμνγν
(
cosh
χ
2
−iγ 1 γ 4 sinh
χ
2
)
γμ
(
cosh
χ
2
+iγ 1 γ 4 sinh
χ
2
)
= aμνγν
cosh
χ
2
γμcosh
χ
2
+ cosh
χ
2
γμiγ 1 γ 4 sinh
χ
2
−iγ 1 γ 4 sinh
χ
2
γμcosh
χ
2
−iγ 1 γ 4 sinh
χ
2
γμiγ 1 γ 4 sinh
χ
2
= aμνγν
γμcosh^2
χ
2
+iγμγ 1 γ 4 cosh
χ
2
sinh
χ
2
−iγ 1 γ 4 γμcosh
χ
2
sinh
χ
2
+γ 1 γ 4 γμγ 1 γ 4 sinh^2
χ
2
= aμνγν
The equation we must satisfy can be checked for eachγmatrix. First checkγ 1. The operations with
theγmatrices all come from the anticommutator,{γμ,γν}= 2δμν, which tells us that the square
of any gamma matrix is one and that commuting a pair of (unequal) matrices changes the sign.
γ 1 cosh^2
χ
2
+iγ 1 γ 1 γ 4 cosh
χ
2
sinh
χ
2
−iγ 1 γ 4 γ 1 cosh
χ
2
sinh
χ
2
+γ 1 γ 4 γ 1 γ 1 γ 4 sinh^2
χ
2
= a 1 νγν
γ 1 cosh^2
χ
2
+iγ 4 cosh
χ
2
sinh
χ
2
+iγ 4 cosh
χ
2
sinh
χ
2
+γ 1 sinh^2
χ
2
= a 1 νγν
γ 1 cosh^2
χ
2
+ 2iγ 4 cosh
χ
2
sinh
χ
2
+γ 1 sinh^2
χ
2
= a 1 νγν
cosh^2
χ
2
+ sinh^2
χ
2
=
1
4
((e
χ 2
+e
− 2 χ
)^2 + (e
χ 2
−e
− 2 χ
)^2 ) =
1
4
(eχ+ 2 +e−χ+eχ−2 +e−χ)
=
1
2
(eχ+e−χ) = coshχ
cosh
χ
2
sinh
χ
2
=
1
4
((e
χ 2
+e
− 2 χ
)(e
χ 2
−e
− 2 χ
)) =
1
4
(eχ−e−χ) =
1
2
sinhχ