ψ~p(1) =
coshχ 2 0 0 sinhχ 2
0 coshχ 2 sinhχ 2 0
0 sinhχ 2 coshχ 2 0
sinhχ 2 0 0 coshχ 2
1
√
V
1
0
0
0
eipρxρ/ ̄h
=
1
√
V
coshχ 2
0
0
sinhχ 2
eipρxρ/ ̄h
=
1
√
V
cosh
χ
2
1
0
0
tanhχ 2
eipρxρ/ ̄h
1 + coshχ
2
=
1 +e
χ+e−χ
2
2
=
eχ+ 2 +e−χ
4
=
(
e
χ
(^2) +e
−χ
2
2
) 2
= cosh^2
χ
2
cosh
χ
2
=
√
1 + coshχ
2
=
√
1 +γ
2
=
√
E+mc^2
2 mc^2
ψ~p(1) =
1
√
V
√
E+mc^2
2 mc^2
1
0
0
tanhχ 2
eipρxρ/ ̄h
=
1
√
γV′
√
E+mc^2
2 mc^2
1
0
0
tanhχ 2
eipρxρ/h ̄
=
√
E+mc^2
2 EV′
1
0
0
tanhχ 2
eipρxρ/ ̄h
In the last step the simple Lorentz contraction was used to setV′ = Vγ. Thisboosted state
matches the plane wave solution including the normalization.
36.10Parity
It is useful to understand theeffect of a parity inversion on a Dirac spinor. Again work with
the Dirac equation and its parity inverted form in whichxj→−xjandx 4 remains unchanged (the
same for the vector potential).
γμ
∂
∂xμ
ψ(x) +
mc
̄h
ψ(x) = 0
γμ
∂
∂x′μ
ψ′(x′) +
mc
̄h
ψ′(x′) = 0
ψ′(x′) = SPψ(x)
∂
∂x′j
= −
∂
∂xj