130_notes.dvi

(Frankie) #1
=


E+mc^2
2 EV′





1

0

0

βγmc^2
γmc^2 +mc^2




e

i(~p·~x−Et)/ ̄h

=


E+mc^2
2 EV′





1

0

0

βγ
γ+1




e

i(~p·~x−Et)/ ̄h

=


E+mc^2
2 EV′





1

0

0

sinhχ
coshχ+1




e

i(~p·~x−Et)/ ̄h

=


E+mc^2
2 EV′





1

0

0

2 sinhχ 2 coshχ 2
cosh^2 χ 2 +sinh^2 χ 2 +cosh^2 χ 2 −sinh^2 χ 2




e

i(~p·~x−Et)/ ̄h

=


E+mc^2
2 EV′





1

0

0

2 sinhχ 2 coshχ 2
2 cosh^2 χ 2




e

i(~p·~x−Et)/ ̄h

=


E+mc^2
2 EV′




1

0

0

tanhχ 2



ei(~p·~x−Et)/ ̄h

where the normalization factor is now set to be√^1 V′, defining this as the primed system.


We can also find the same state by boosting the at rest solution. Recall that we are boosting in the
x direction with−β, implyingχ→−χ.


Sboost = cosh

χ
2

−iγ 1 γ 4 sinh

χ
2

= cosh

χ
2

−i




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0







1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 − 1



sinh

χ
2

= cosh

χ
2

−i




0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0



sinh

χ
2

= cosh

χ
2

+




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



sinh

χ
2

=




coshχ 2 0 0 sinhχ 2
0 coshχ 2 sinhχ 2 0
0 sinhχ 2 coshχ 2 0
sinhχ 2 0 0 coshχ 2



Free download pdf