ADDITION OF ANGULAR MOMENTUM
J~=~L+S~ |ℓ−s|≤j≤ℓ+s L~·S=^1
2 (J(^2) −L (^2) −S (^2) )
ψjmjℓs=
∑
mℓmsC(jmj;ℓmℓsms)Yℓmℓχsms=∑
mℓms〈jmjℓs|ℓmℓsms〉Yℓmℓχsmsψj,mj=ψℓ+^12 ,m+^12 =√
ℓ+m+1
2 ℓ+1 Yℓmχ++√
ℓ−m
2 ℓ+1Yℓ,m+1χ− fors=1
2 and anyℓψj,mj=ψℓ− (^12) ,m+ 12 =
√
ℓ−m
2 ℓ+1Yℓmχ+−√
ℓ+m+1
2 ℓ+1 Yℓ,m+1χ− fors=1
2 and anyℓPERTURBATION THEORY AND RADIATIVE DECAYS
En(1)=〈φn|H 1 |φn〉 En(2)=
∑
k 6 =n|〈φk|H 1 |φn〉|^2
E(0)n−Ek(0) c(1)
nk=〈φk|H 1 |φn〉
E(0)n −E(0)kcn(t) =i^1 h ̄
∫t
0dt′ei(En−Ei)t′/ ̄h
〈φn|V(t′)|φi〉Fermi’s Golden Rule: Γi→f=^2 h ̄π|〈ψf|V|ψi〉|^2 ρf(E)
Γi→f=^2 ̄hπ
∫ ∏
k(V d(^3) pk
(2π ̄h)^3 )|Mfi|
(^2) δ (^3) (momentum conservation)δ(Energy conservation)
Γradm→k= 2 πmα (^2) c 2
∫
dΩpωkm|〈φm|e−i
~k·~r
ˆǫ·~p|φk〉|^2ΓEm^1 →k= 2 πcα 2
∫
dΩpω^3 km|〈φm|ǫˆ·~r|φk〉|^2 ∆l=±1, ∆s= 0ˆǫ·rˆ=
√
4 π
3 (ǫzY^10 +−ǫx√+iǫy
2 Y^11 +ǫx√+iǫy
2 Y^1 −^1 ) ˆǫ·~k= 0I(ω)∝(ω−ω 0 Γ) 2 /+(Γ^2 /2) 2 Γcollision=Pσ
√
3
mkT (∆ω
ω)Dopler=√
kT
mc^2(ddσΩ)BORN= 4 π^12 h ̄ 4 ppifmfmi|V ̃(∆ )~ |^2 V ̃(∆ ) =~
∫
d^3 ~r e−i
∆~·~r
V(~r) ∆ =~ ~pf− ̄h~piATOMS AND MOLECULES
Hund: 1) maxs 2)maxℓ(allowed) 3) minj(≤^12 shell) else maxj
Erot=ℓ(ℓ+1) ̄h2
2 I ≈1
2000 eV Evib= (n+1
2 ) ̄hω≈1
50 eV