TITLE.PM5

(Ann) #1
358 ENGINEERING THERMODYNAMICS

dharm
\M-therm\Th7-1.pm5


But,



F
H

I
K

p
T v =


∂−−

RS
T

UV
W

L
NM

O
T QP

RT
vb

a
v^2 v =

R
vb−

∴ du c dT T

R
vb
v pdv
1

2
1

2
1

2
zz=+z −

F
HG

I
KJ

L
N

M
M

O
Q

P
P

= cdT T

R
vb

RT
vb

a
v
v + dv

F
HG

I
KJ



RS −
T

U
V
W

L
N

M
M

O
Q

P


zz (^12) P
2
1
2
= cdT
RT
vb
RT
vb
a
v
v + dv




  • L
    N
    M
    O
    Q
    zz 1 2 P
    2
    1
    2
    = cdT
    a
    v
    v +zz 2 dv
    1
    2
    1
    2
    .
    ∴ u 2 – u 1 = cv(T 2 – T 1 ) + a 1
    v
    1
    12 v

    F
    HG
    I
    KJ


. (Ans.)


(ii)Change in enthalpy :
The change in enthalpy is given by

dh = cpdT + vT

v
− T p


F
H

I
K

L
N

M
M

O
Q

P
P
dp



F
H

I
K

h
pT = 0 + v – T^



F
H

I
K

v
T p ...(1)
Let us consider p = f(v, T)

∴ dp = HF∂∂pvIK
T

dv + HF∂∂TpIK
v

dT

∴ (dp)T = FH∂∂pvIK
T

dv + 0 as dT = 0 ...(2)
From equation (1),

(dh)T = vTTv
p

− FH∂∂ IK


L
N

M
M

O
Q

P
P

(dp)T.

Substituting the value of (dp)T from eqn. (2), we get

(dh)T = vT

v
T

p
− p vT


F
H

I
K

L
N

M
M

O
Q

P
P



F
H

I
K^ dv

= v

p
v T

v
T

p
T p vT



F
H

I
K −



F
H

I
K



F
H

I
K

L
N

M
M

O
Q

P
P^ dv ...(3)
Using the cyclic relation for p, v, T which is


F
H

I
K



F
HG

I
KJ



F
HG

I
KJ =−

v
T

T
p

p
p vTv^1




F
H

I
K



F
HG

I
KJ
=− ∂

F
HG

I
KJ

v
T

p
v

p
p TvT
Free download pdf