358 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th7-1.pm5
But,
∂
∂
F
H
I
K
p
T v =
∂
∂−−
RS
T
UV
W
L
NM
O
T QP
RT
vb
a
v^2 v =
R
vb−
∴ du c dT T
R
vb
v pdv
1
2
1
2
1
2
zz=+z −
F
HG
I
KJ
−
L
N
M
M
O
Q
P
P
= cdT T
R
vb
RT
vb
a
v
v + dv
−
F
HG
I
KJ
−
−
RS −
T
U
V
W
L
N
M
M
O
Q
P
zz (^12) P
2
1
2
= cdT
RT
vb
RT
vb
a
v
v + dv
−
−
−
- L
N
M
O
Q
zz 1 2 P
2
1
2
= cdT
a
v
v +zz 2 dv
1
2
1
2
.
∴ u 2 – u 1 = cv(T 2 – T 1 ) + a 1
v
1
12 v
−
F
HG
I
KJ
. (Ans.)
(ii)Change in enthalpy :
The change in enthalpy is given by
dh = cpdT + vT
v
− T p
∂
∂
F
H
I
K
L
N
M
M
O
Q
P
P
dp
∂
∂
F
H
I
K
h
pT = 0 + v – T^
∂
∂
F
H
I
K
v
T p ...(1)
Let us consider p = f(v, T)
∴ dp = HF∂∂pvIK
T
dv + HF∂∂TpIK
v
dT
∴ (dp)T = FH∂∂pvIK
T
dv + 0 as dT = 0 ...(2)
From equation (1),
(dh)T = vTTv
p
− FH∂∂ IK
L
N
M
M
O
Q
P
P
(dp)T.
Substituting the value of (dp)T from eqn. (2), we get
(dh)T = vT
v
T
p
− p vT
∂
∂
F
H
I
K
L
N
M
M
O
Q
P
P
∂
∂
F
H
I
K^ dv
= v
p
v T
v
T
p
T p vT
∂
∂
F
H
I
K −
∂
∂
F
H
I
K
∂
∂
F
H
I
K
L
N
M
M
O
Q
P
P^ dv ...(3)
Using the cyclic relation for p, v, T which is
∂
∂
F
H
I
K
∂
∂
F
HG
I
KJ
∂
∂
F
HG
I
KJ =−
v
T
T
p
p
p vTv^1
∴
∂
∂
F
H
I
K
∂
∂
F
HG
I
KJ
=− ∂
∂
F
HG
I
KJ
v
T
p
v
p
p TvT