358 ENGINEERING THERMODYNAMICSdharm
\M-therm\Th7-1.pm5
But,∂
∂F
HI
Kp
T v =∂
∂−−RS
TUV
WL
NMO
T QPRT
vba
v^2 v =R
vb−∴ du c dT TR
vb
v pdv
12
12
12
zz=+z −F
HGI
KJ
−L
NM
MO
QP
P= cdT TR
vbRT
vba
v
v + dv
−F
HGI
KJ−
−RS −
TU
V
WL
NM
MO
QP
zz (^12) P
2
1
2
= cdT
RT
vb
RT
vb
a
v
v + dv
−
−
−
- L
N
M
O
Q
zz 1 2 P
2
1
2
= cdT
a
v
v +zz 2 dv
1
2
1
2
.
∴ u 2 – u 1 = cv(T 2 – T 1 ) + a 1
v
1
12 v
−
F
HG
I
KJ
. (Ans.)
(ii)Change in enthalpy :
The change in enthalpy is given bydh = cpdT + vTv
− T p
∂
∂F
HI
KL
NM
MO
QP
P
dp∂
∂F
HI
Kh
pT = 0 + v – T^∂
∂F
HI
Kv
T p ...(1)
Let us consider p = f(v, T)∴ dp = HF∂∂pvIK
Tdv + HF∂∂TpIK
vdT∴ (dp)T = FH∂∂pvIK
Tdv + 0 as dT = 0 ...(2)
From equation (1),(dh)T = vTTv
p− FH∂∂ IK
L
NM
MO
QP
P(dp)T.Substituting the value of (dp)T from eqn. (2), we get(dh)T = vTv
Tp
− p vT
∂
∂F
HI
KL
NM
MO
QP
P∂
∂F
HI
K^ dv= vp
v Tv
Tp
T p vT∂
∂F
HI
K −∂
∂F
HI
K∂
∂F
HI
KL
NM
MO
QP
P^ dv ...(3)
Using the cyclic relation for p, v, T which is
∂
∂F
HI
K∂
∂F
HGI
KJ∂
∂F
HGI
KJ =−v
TT
pp
p vTv^1∴∂
∂F
HI
K∂
∂F
HGI
KJ
=− ∂
∂F
HGI
KJv
Tp
vp
p TvT