TITLE.PM5

(Ann) #1
360 ENGINEERING THERMODYNAMICS

dharm
\M-therm\Th7-1.pm5


Solution. The general equation for finding dh is given by

dh = cp dT + vT

v
− T p


F
H

I
K

L
N

M
M

O
Q

P
P^ dp

dh
1

2
z = 0 + vT

v
T p
T

− ∂

F
HG

I
KJ

R
S
|
T|

U
V
|
W|

L


N


M
M

O


Q


P
z 1 P

2

as dT = 0 for isothermal change.
From the given equation of state, we have


F
H

I
K

v
T p
= R
p

C
T

+^34 ...(i)

∴ h 2 – h 1 =
RT
p

C
T

RT
p

C
T

dp
T

F −
HG

I
KJ

−−
R
S
|
T|

U
V
|
W|

L
N

M
M

O
Q

P


z (^133) P
(^23)
= −
F
HG
I
KJ
L
N
M
O
Q
z P =− −
44
1 3
2
3 21
C
T
dp C
T
pp
T
[( )]T
The general equation for finding ds is given by
ds = cp dTT Tv
p
−FH∂∂ IK dp
ds
1
2
z = −


F
HG
I
KJ
L
N
M
M
O
Q
P
z P
v
T
dp
(^1) p T
2
as dT = 0 for isothermal change.
Substituting the value from eqn. (i), we get
(s 2 – s 1 ) = −+
F
HG
I
KJ
L
N
M
O
Q
z P
R
p
C
T
dp
T
3
1 4
2
= – R loge
p
p
2
1
F
HG
I
KJ –
3C
T^4
F
H
I
K^ (p^2 – p^1 ) (Ans.)
Example 7.7. For a perfect gas obeying pv = RT, show that cv and cp are independent of
pressure.
Solution. Let s = f(T, v)
Then ds =


F
H
I
K
s
T v^ dT +


F
H
I
K
s
vT^ dv
Also u = f(T, v)
Then du =


F
H
I
K
u
T v^ dT +


F
H
I
K
u
vT^ dv = cv dT +


F
H
I
K
u
vT^ dv
Also, du = Tds – pdv
Tds – pdv = cv dT + FH∂∂uvIK
T
dv
ds = cv dT
TT
u



  • vT pdv


    F
    H
    I
    K +
    L
    N
    M
    O
    Q
    P
    1

Free download pdf