THERMODYNAMIC RELATIONS 363dharm
\M-therm\Th7-2.pm5
∂
∂F
HI
Kv
T p = –∂
∂F
HI
K∂
∂F
HI
Kp
Tv
vT. p
= – FH∂∂psIK FH∂∂TsIK FH∂∂psIK FH∂∂vsKI
vvTT
Substituting the value from eqn. (i), we get
∂
∂F
HI
Kv
T p =∂
∂F
HGI
KJ∂
∂F
HGI
KJ∂
∂F
HGI
KJ∂
∂F
HGI
KJT
v ss
Ts
pv
v T sT= HF∂∂ IK HF∂∂IK FH∂∂ IK
R
S
TU
V
W∂
∂F
HI
KT
v sv
ss
Ts
..TvTp = –
∂
∂F
HI
Ks
pT∴ FH∂∂TvIK
p= – FH∂∂spIK
T
This is Maxwell fourth relation.
Example 7.9. Derive the following relations :(i)u = a – T (^) HF∂∂TaIK
v
(ii)h = g – T (^) HF∂∂TgIK
p
(iii)cv = – T ∂
∂
F
HG
I
KJ
2
2
v
a
T
(iv)cp = – T ∂
∂
F
H
G
I
K
J
2
2
p
g
T
where a = Helmholtz function (per unit mass), and
g = Gibbs function (per unit mass).
Solution. (i) Let a = f(v, T)
Then da = HF∂∂avIK
T
dv + HF∂∂TaIK
v
dT
Also da = – pdv – sdT
Comparing the co-efficients of dT, we get
∂
∂
F
H
I
K
a
T v = – s
Also a = u – Ts
or u = a + Ts = a – T FH∂∂TaIK
v
Hence u = a – T FH∂∂TaIK
v
. (Ans.)
(ii) Let g = f(p, T)
Then dg = HF∂∂gpIK
Tdp + HF∂∂TgIK
pdTAlso dg = vdp – sdT
Comparing the co-efficients of dT, we get
∂
∂F
HI
Kg
T p = – s