THERMODYNAMIC RELATIONS 363
dharm
\M-therm\Th7-2.pm5
∂
∂
F
H
I
K
v
T p = –
∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
T
v
vT. p
= – FH∂∂psIK FH∂∂TsIK FH∂∂psIK FH∂∂vsKI
vvTT
Substituting the value from eqn. (i), we get
∂
∂
F
H
I
K
v
T p =
∂
∂
F
HG
I
KJ
∂
∂
F
HG
I
KJ
∂
∂
F
HG
I
KJ
∂
∂
F
HG
I
KJ
T
v s
s
T
s
p
v
v T sT
= HF∂∂ IK HF∂∂IK FH∂∂ IK
R
S
T
U
V
W
∂
∂
F
H
I
K
T
v s
v
s
s
T
s
..TvTp = –
∂
∂
F
H
I
K
s
pT
∴ FH∂∂TvIK
p
= – FH∂∂spIK
T
This is Maxwell fourth relation.
Example 7.9. Derive the following relations :
(i)u = a – T (^) HF∂∂TaIK
v
(ii)h = g – T (^) HF∂∂TgIK
p
(iii)cv = – T ∂
∂
F
HG
I
KJ
2
2
v
a
T
(iv)cp = – T ∂
∂
F
H
G
I
K
J
2
2
p
g
T
where a = Helmholtz function (per unit mass), and
g = Gibbs function (per unit mass).
Solution. (i) Let a = f(v, T)
Then da = HF∂∂avIK
T
dv + HF∂∂TaIK
v
dT
Also da = – pdv – sdT
Comparing the co-efficients of dT, we get
∂
∂
F
H
I
K
a
T v = – s
Also a = u – Ts
or u = a + Ts = a – T FH∂∂TaIK
v
Hence u = a – T FH∂∂TaIK
v
. (Ans.)
(ii) Let g = f(p, T)
Then dg = HF∂∂gpIK
T
dp + HF∂∂TgIK
p
dT
Also dg = vdp – sdT
Comparing the co-efficients of dT, we get
∂
∂
F
H
I
K
g
T p = – s