TITLE.PM5

(Ann) #1
362 ENGINEERING THERMODYNAMICS

dharm
\M-therm\Th7-2.pm5


Example 7.8. Using the first Maxwell equation, derive the remaining three.
Solution. The first Maxwell relation is as follows :



F
H

I
K =−



F
H

I
K

T
v

p
svs ...(i) (Eqn. 7.18)
(1) Using the cyclic relation


F
H

I
K



F
H

I
K



F
H

I
K

T
v

v
s

s
sT v..T = – 1




F
H

I
K

s
vT = –



F
H

I
K

T
v s.



F
H

I
K

s
T v ...(ii)
Substituting the value from eqn. (i) in eqn. (ii), we get


F
H

I
K

s
vT =



F
H

I
K



F
H

I
K

p
s

s
vv. T ...(iii)
Using the chain rule,


F
H

I
K



F
H

I
K



F
H

I
K

p
s

s
T

T
vvv..p = 1 ...(iv)
Substituting the value of eqn. (iv) in eqn. (iii), we get



F
H

I
K

s
vT =



F
H

I
K

p
T v

This is Maxwell Third relation.
(2) Again using the cyclic relation


F
H

I
K



F
H

I
K



F
H

I
K

s
p

p
v

v
vs..s p = – 1




F
H

I
K

v
s p = –



F
H

I
K



F
H

I
K

p
s

v
vs. p ...(v)
Substituting the value from eqn. (i) into eqn. (v)


F
H

I
K

v
s p =



F
H

I
K



F
H

I
K

T
v

v
ss. p ...(vi)
Again using the chain rule,


F
H

I
K



F
H

I
K



F
H

I
K

T
v

v
p

p
ss s..T = 1
Substituting the value of (vi) into (v), we get



F
H

I
K =



F
H

I
K

v
s

T
p p s
This is Maxwell second relation.

(3)



F
H

I
K



F
H

I
K



F
H

I
K

v
T

T
p

p
p..vTv = – 1
Free download pdf