362 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th7-2.pm5
Example 7.8. Using the first Maxwell equation, derive the remaining three.
Solution. The first Maxwell relation is as follows :
∂
∂
F
H
I
K =−
∂
∂
F
H
I
K
T
v
p
svs ...(i) (Eqn. 7.18)
(1) Using the cyclic relation
∂
∂
F
H
I
K
∂
∂
F
H
I
K
∂
∂
F
H
I
K
T
v
v
s
s
sT v..T = – 1
∴
∂
∂
F
H
I
K
s
vT = –
∂
∂
F
H
I
K
T
v s.
∂
∂
F
H
I
K
s
T v ...(ii)
Substituting the value from eqn. (i) in eqn. (ii), we get
∂
∂
F
H
I
K
s
vT =
∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
s
s
vv. T ...(iii)
Using the chain rule,
∂
∂
F
H
I
K
∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
s
s
T
T
vvv..p = 1 ...(iv)
Substituting the value of eqn. (iv) in eqn. (iii), we get
∂
∂
F
H
I
K
s
vT =
∂
∂
F
H
I
K
p
T v
This is Maxwell Third relation.
(2) Again using the cyclic relation
∂
∂
F
H
I
K
∂
∂
F
H
I
K
∂
∂
F
H
I
K
s
p
p
v
v
vs..s p = – 1
∴
∂
∂
F
H
I
K
v
s p = –
∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
s
v
vs. p ...(v)
Substituting the value from eqn. (i) into eqn. (v)
∂
∂
F
H
I
K
v
s p =
∂
∂
F
H
I
K
∂
∂
F
H
I
K
T
v
v
ss. p ...(vi)
Again using the chain rule,
∂
∂
F
H
I
K
∂
∂
F
H
I
K
∂
∂
F
H
I
K
T
v
v
p
p
ss s..T = 1
Substituting the value of (vi) into (v), we get
∂
∂
F
H
I
K =
∂
∂
F
H
I
K
v
s
T
p p s
This is Maxwell second relation.
(3)
∂
∂
F
H
I
K
∂
∂
F
H
I
K
∂
∂
F
H
I
K
v
T
T
p
p
p..vTv = – 1