362 ENGINEERING THERMODYNAMICSdharm
\M-therm\Th7-2.pm5
Example 7.8. Using the first Maxwell equation, derive the remaining three.
Solution. The first Maxwell relation is as follows :∂
∂F
HI
K =−∂
∂F
HI
KT
vp
svs ...(i) (Eqn. 7.18)
(1) Using the cyclic relation
∂
∂F
HI
K∂
∂F
HI
K∂
∂F
HI
KT
vv
ss
sT v..T = – 1∴
∂
∂F
HI
Ks
vT = –∂
∂F
HI
KT
v s.∂
∂F
HI
Ks
T v ...(ii)
Substituting the value from eqn. (i) in eqn. (ii), we get
∂
∂F
HI
Ks
vT =∂
∂F
HI
K∂
∂F
HI
Kp
ss
vv. T ...(iii)
Using the chain rule,
∂
∂F
HI
K∂
∂F
HI
K∂
∂F
HI
Kp
ss
TT
vvv..p = 1 ...(iv)
Substituting the value of eqn. (iv) in eqn. (iii), we get∂
∂F
HI
Ks
vT =∂
∂F
HI
Kp
T vThis is Maxwell Third relation.
(2) Again using the cyclic relation
∂
∂F
HI
K∂
∂F
HI
K∂
∂F
HI
Ks
pp
vv
vs..s p = – 1∴∂
∂F
HI
Kv
s p = –∂
∂F
HI
K∂
∂F
HI
Kp
sv
vs. p ...(v)
Substituting the value from eqn. (i) into eqn. (v)
∂
∂F
HI
Kv
s p =∂
∂F
HI
K∂
∂F
HI
KT
vv
ss. p ...(vi)
Again using the chain rule,
∂
∂F
HI
K∂
∂F
HI
K∂
∂F
HI
KT
vv
pp
ss s..T = 1
Substituting the value of (vi) into (v), we get∂
∂F
HI
K =∂
∂F
HI
Kv
sT
p p s
This is Maxwell second relation.(3)∂
∂F
HI
K∂
∂F
HI
K∂
∂F
HI
Kv
TT
pp
p..vTv = – 1