TITLE.PM5

(Ann) #1
366 ENGINEERING THERMODYNAMICS

dharm
\M-therm\Th7-2.pm5


∴ FH∂∂TvIK
s

= −cKT
v

β. (Ans.)

+Example 7.12. Derive the third Tds equation


Tds = cv (^) HF∂∂TpIK
v
dp + cp ∂

F
HG
I
KJ
T
v p
dv
and also show that this may be written as :
Tds =
cv
β
Kdp +
c
v
p
β
dv.
Solution. Let s = f(p, v)
Then ds = HF∂∂psIK
v
dp + FH∂∂svIK
p
dv
or Tds = T FH∂∂psIK
v
dp + T


F
HG
I
KJ
s
v p
dv
= T FH∂∂TsKI FH∂∂TpKI
vv



  • T


    F
    H
    I
    K


    F
    H
    I
    K
    s
    T
    T
    p v p^ dv
    But


    F
    H
    I
    K
    s
    T v =
    c
    T
    v and ∂

    F
    H
    I
    K
    s
    T p =
    c
    T
    p
    Hence Tds = c Tp
    v
    vpdp c Tv dv
    p


    F
    H
    I
    K +


    F
    H
    I
    K ...Proved.
    Also


    F
    H
    I
    K
    T
    p v =



    F
    H
    I
    K


    F
    H
    I
    K
    1
    p
    v
    v
    T T p
    = –


    F
    H
    I
    K
    T
    v p^


    F
    H
    I
    K
    v
    pT =
    K
    β
    and


    F
    H
    I
    K
    T
    v p =
    1
    βv
    Substituting these values in the above Tds equation, we get
    Tds = cKdp
    c
    v
    v pdv
    ββ

  • ...Proved.
    Example 7.13. Using Maxwell relation derive the following Tds equation
    Tds = cp dT – T


    F
    H
    I
    K
    v
    T p^ dp. (U.P.S.C. 1988)
    Solution. s = f (T, p)
    Tds = T (^) HF∂∂TsIK
    p
    dT + T (^) HF∂∂psIK
    T
    dp ...(i)
    where cp = T


    F
    HG
    I
    KJ
    s
    T p
    Also, FH∂∂spIK
    T
    = – FH∂∂TvIK
    p
    ......Maxwell relation
    Substituting these in eqn. (i), we get
    Tds = cp dT – T HF∂∂TvIK
    p
    dp. (Ans.)

Free download pdf