366 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th7-2.pm5
∴ FH∂∂TvIK
s
= −cKT
v
β. (Ans.)
+Example 7.12. Derive the third Tds equation
Tds = cv (^) HF∂∂TpIK
v
dp + cp ∂
∂
F
HG
I
KJ
T
v p
dv
and also show that this may be written as :
Tds =
cv
β
Kdp +
c
v
p
β
dv.
Solution. Let s = f(p, v)
Then ds = HF∂∂psIK
v
dp + FH∂∂svIK
p
dv
or Tds = T FH∂∂psIK
v
dp + T
∂
∂
F
HG
I
KJ
s
v p
dv
= T FH∂∂TsKI FH∂∂TpKI
vv
- T
∂
∂
F
H
I
K
∂
∂
F
H
I
K
s
T
T
p v p^ dv
But
∂
∂
F
H
I
K
s
T v =
c
T
v and ∂
∂
F
H
I
K
s
T p =
c
T
p
Hence Tds = c Tp
v
vpdp c Tv dv
p
∂
∂
F
H
I
K +
∂
∂
F
H
I
K ...Proved.
Also
∂
∂
F
H
I
K
T
p v =
−
∂
∂
F
H
I
K
∂
∂
F
H
I
K
1
p
v
v
T T p
= –
∂
∂
F
H
I
K
T
v p^
∂
∂
F
H
I
K
v
pT =
K
β
and
∂
∂
F
H
I
K
T
v p =
1
βv
Substituting these values in the above Tds equation, we get
Tds = cKdp
c
v
v pdv
ββ - ...Proved.
Example 7.13. Using Maxwell relation derive the following Tds equation
Tds = cp dT – T
∂
∂
F
H
I
K
v
T p^ dp. (U.P.S.C. 1988)
Solution. s = f (T, p)
Tds = T (^) HF∂∂TsIK
p
dT + T (^) HF∂∂psIK
T
dp ...(i)
where cp = T
∂
∂
F
HG
I
KJ
s
T p
Also, FH∂∂spIK
T
= – FH∂∂TvIK
p
......Maxwell relation
Substituting these in eqn. (i), we get
Tds = cp dT – T HF∂∂TvIK
p
dp. (Ans.)