THERMODYNAMIC RELATIONS 367
dharm
\M-therm\Th7-2.pm5
Example 7.14. Derive the following relations
∂
∂
F
H
I
K
T
v u =
T p
T
p
c
v
v
∂
∂
F
HG
I
KJ −
.
Solution.
∂
∂
F
H
I
K
T
v u can be expressed as follows :
∂
∂
F
H
I
K
T
v u =
−FH∂∂ IK
∂
∂
F
H
I
K
T
u
v
u
v
T
= –
∂
∂
F
H
I
K
∂
∂
F
H
I
K
u
v
u
T
T
v
Also Tds = du + pdv
or du = Tds – pdv
or
∂
∂
F
H
I
K
u
vT = T^
∂
∂
F
H
I
K
s
vT – p^
∂
∂
F
H
I
K
u
vT
or
∂
∂
F
H
I
K
u
vT = T^
∂
∂
F
H
I
K
s
vT – p ...(i)
or
∂
∂
F
H
I
K
u
T v = T^
∂
∂
F
H
I
K
s
T v ...(ii)
Dividing eqn. (i) by eqn. (ii), we get
∂
∂
F
H
I
K
T
v u =
T sv p
T Ts
T
v
∂
∂
F
H
I
K −
∂
∂
F
H
I
K
...(iii)
Also cv = T
∂
∂
F
H
I
K
s
T v
and
∂
∂
F
HG
I
KJ
s
vT =
∂
∂
F
H
I
K
p
T v ... Maxwell relation
Substituting these value in eqn. (iii), we get
∂
∂
F
H
I
K
T
v u =
T p
T
p
c
v
v
∂
∂
F
HG
I
KJ −
...Proved.
+Example 7.15. Prove that for any fluid
(i)
∂
∂
F
H
I
K
h
vT = v^
∂
∂
F
H
I
K
p
vT + T^
∂
∂
F
H
I
K
p
T v (ii)
∂
∂
F
H
I
K
h
pT = v – T^
∂
∂
F
H
I
K
v
T p
Show that for a fluid obeying van der Waal’s equation
p = vbRT− – a
v^2
where R, a and b are constants
h (enthalpy) =
RTb
vb
a
− − v
2
+ f(T)
where f(T) is arbitrary.