TITLE.PM5

(Ann) #1
THERMODYNAMIC RELATIONS 367

dharm
\M-therm\Th7-2.pm5


Example 7.14. Derive the following relations



F
H

I
K

T
v u =

T p
T
p
c

v
v



F
HG

I
KJ −
.

Solution.



F
H

I
K

T
v u can be expressed as follows :



F
H

I
K

T
v u =

−FH∂∂ IK


F
H

I
K

T
u
v
u

v

T

= –



F
H

I
K


F
H

I
K

u
v
u
T

T

v
Also Tds = du + pdv
or du = Tds – pdv

or



F
H

I
K

u
vT = T^



F
H

I
K

s
vT – p^



F
H

I
K

u
vT

or



F
H

I
K

u
vT = T^



F
H

I
K

s
vT – p ...(i)

or



F
H

I
K

u
T v = T^



F
H

I
K

s
T v ...(ii)
Dividing eqn. (i) by eqn. (ii), we get



F
H

I
K

T
v u =

T sv p

T Ts

T

v



F
H

I
K −


F
H

I
K

...(iii)

Also cv = T



F
H

I
K

s
T v

and


F
HG

I
KJ

s
vT =



F
H

I
K

p
T v ... Maxwell relation
Substituting these value in eqn. (iii), we get



F
H

I
K

T
v u =

T p
T
p
c

v
v



F
HG

I
KJ −
...Proved.

+Example 7.15. Prove that for any fluid


(i)



F
H

I
K

h
vT = v^



F
H

I
K

p
vT + T^



F
H

I
K

p
T v (ii)



F
H

I
K

h
pT = v – T^



F
H

I
K

v
T p
Show that for a fluid obeying van der Waal’s equation
p = vbRT− – a
v^2
where R, a and b are constants

h (enthalpy) =
RTb
vb

a
− − v

2
+ f(T)
where f(T) is arbitrary.
Free download pdf