THERMODYNAMIC RELATIONS 367dharm
\M-therm\Th7-2.pm5
Example 7.14. Derive the following relations∂
∂F
HI
KT
v u =T p
T
p
cv
v∂
∂F
HGI
KJ −
.Solution.∂
∂F
HI
KT
v u can be expressed as follows :∂
∂F
HI
KT
v u =−FH∂∂ IK
∂
∂F
HI
KT
u
v
uvT= –∂
∂F
HI
K
∂
∂F
HI
Ku
v
u
TTv
Also Tds = du + pdv
or du = Tds – pdvor∂
∂F
HI
Ku
vT = T^∂
∂F
HI
Ks
vT – p^∂
∂F
HI
Ku
vTor∂
∂F
HI
Ku
vT = T^∂
∂F
HI
Ks
vT – p ...(i)or∂
∂F
HI
Ku
T v = T^∂
∂F
HI
Ks
T v ...(ii)
Dividing eqn. (i) by eqn. (ii), we get∂
∂F
HI
KT
v u =T sv pT TsTv∂
∂F
HI
K −
∂
∂F
HI
K...(iii)Also cv = T∂
∂F
HI
Ks
T vand
∂
∂F
HGI
KJs
vT =∂
∂F
HI
Kp
T v ... Maxwell relation
Substituting these value in eqn. (iii), we get∂
∂F
HI
KT
v u =T p
T
p
cv
v∂
∂F
HGI
KJ −
...Proved.+Example 7.15. Prove that for any fluid
(i)∂
∂F
HI
Kh
vT = v^∂
∂F
HI
Kp
vT + T^∂
∂F
HI
Kp
T v (ii)∂
∂F
HI
Kh
pT = v – T^∂
∂F
HI
Kv
T p
Show that for a fluid obeying van der Waal’s equation
p = vbRT− – a
v^2
where R, a and b are constantsh (enthalpy) =
RTb
vba
− − v2
+ f(T)
where f(T) is arbitrary.