TITLE.PM5

(Ann) #1
368 ENGINEERING THERMODYNAMICS

dharm
\M-therm\Th7-2.pm5


Solution. We know that
ds = cTvdT Tp dv
v

+FH∂∂ IK [Eqn. (7.24)]


Also dh = Tds + vdp = T

c
TdT

p
T dv

v
v

L +FH∂∂ IK
N
M

O
Q
P + vdp

i.e., dh = cvdT + T



F
H

I
K

p
T v + dv + vdp
Putting dT = 0, we get


F
HG

I
KJ =



F
HG

I
KJ +



F
HG

I
KJ

h
v
T p
T
v p
TvTv ...Proved.

(ii) FH∂∂phIK =FH∂∂hvIK HF∂∂vpIK
TTT

= T p
T

v p
v

v
vTp T



F
HG

I
KJ
+ ∂

F
HG

I
KJ

L
N

M


O
Q

P




F
HG

I
KJ

i.e.,



F
H

I
K

h
pT = T^



F
HG

I
KJ



F
HG

I
KJ

p
T

v
v pT + v ...(i)
Also ∂

F
HG

I
KJ



F
HG

I
KJ

p
T

v
v pT

= – FH∂∂TvIK
p
∴ Eqn. (i) becomes


F
H

I
K

h
pT = v – T^



F
H

I
K

v
Tp ...Proved.

Now p =
RT
vb

a
− v
− 2


F
H

I
K

p
vT = –

RT
vb

a
()− v
23 +^2

and



F
H

I
K

p
T v =

R
vb−




F
H

I
K

h
vT = v

RT
vb

a
v

− T vbR

+
L
NM

O
QP

+ FH − IK
()^23

2

= – RTv
vb

a
v

RT
()− vb

++

(^22) −
(^2) = −
− + − +
RTv
vb
RT
vb
a
()^22 v
2
= −+ −

RTv RT v b +
vb
a
v
()
()^22
(^2) = −+−

RTv RTv RTb+
vb
a
()^22 v
2
i.e., FH∂∂hvIK
T
= −

RTb+
vb
a
()^22 v
2
or h =
RTb
vb
2a
v
f(T)

−+ ...Proved.
This shows h depends on T and v.
Example 7.16. Derive the following relations :
(i)HF∂∂hpIK
T
= v – T


F
H
I
K
v
T p = – cp^


F
H
I
K
T
p h (ii)


F
H
I
K
u
vT = T^


F
H
I
K
p
T v – p

Free download pdf