368 ENGINEERING THERMODYNAMICSdharm
\M-therm\Th7-2.pm5
Solution. We know that
ds = cTvdT Tp dv
v+FH∂∂ IK [Eqn. (7.24)]
Also dh = Tds + vdp = Tc
TdTp
T dvv
vL +FH∂∂ IK
N
MO
Q
P + vdpi.e., dh = cvdT + T∂
∂F
HI
Kp
T v + dv + vdp
Putting dT = 0, we get
∂
∂F
HGI
KJ =∂
∂F
HGI
KJ +∂
∂F
HGI
KJh
v
T p
T
v p
TvTv ...Proved.(ii) FH∂∂phIK =FH∂∂hvIK HF∂∂vpIK
TTT= T p
Tv p
vv
vTp T∂
∂F
HGI
KJ
+ ∂
∂F
HGI
KJL
NM
O
QP
∂
∂F
HGI
KJi.e.,∂
∂F
HI
Kh
pT = T^∂
∂F
HGI
KJ∂
∂F
HGI
KJp
Tv
v pT + v ...(i)
Also ∂
∂F
HGI
KJ∂
∂F
HGI
KJp
Tv
v pT= – FH∂∂TvIK
p
∴ Eqn. (i) becomes
∂
∂F
HI
Kh
pT = v – T^∂
∂F
HI
Kv
Tp ...Proved.Now p =
RT
vba
− v
− 2
∂
∂F
HI
Kp
vT = –RT
vba
()− v
23 +^2and∂
∂F
HI
Kp
T v =R
vb−∴
∂
∂F
HI
Kh
vT = vRT
vba
v− T vbR
−
+
L
NMO
QP+ FH − IK
()^232= – RTv
vba
vRT
()− vb++(^22) −
(^2) = −
− + − +
RTv
vb
RT
vb
a
()^22 v
2
= −+ −
−
RTv RT v b +
vb
a
v
()
()^22
(^2) = −+−
−
RTv RTv RTb+
vb
a
()^22 v
2
i.e., FH∂∂hvIK
T
= −
−
RTb+
vb
a
()^22 v
2
or h =
RTb
vb
2a
v
f(T)
−
−+ ...Proved.
This shows h depends on T and v.
Example 7.16. Derive the following relations :
(i)HF∂∂hpIK
T
= v – T
∂
∂
F
H
I
K
v
T p = – cp^
∂
∂
F
H
I
K
T
p h (ii)
∂
∂
F
H
I
K
u
vT = T^
∂
∂
F
H
I
K
p
T v – p