TITLE.PM5

(Ann) #1
THERMODYNAMIC RELATIONS 369

dharm
\M-therm\Th7-2.pm5


With the aid of eqn. (ii) show that


F
H

I
K

u
pT = – T^



F
H

I
K

v
T p – p



F
H

I
K

v
pT

The quantity cp (^) HF∂∂TpIK
h
is known as Joule-Thomson cooling effect. Show that this cooling
effect for a gas obeying the equation of state (v – b) =
RT
p^ –
C
T^2 is equal to^
3C
T
FHG 2 IKJ−b.
Solution. We know that


F
H
I
K
h
pT = – μcp ...[Eqn. (7.44)]
Also μ = c^1 T Tv v
p p


F
H
I
K −
L
N
M
M
O
Q
P
P
...[Eqn. (7.46)]



F
H
I
K
h
pT = – T
v
T p v


F
H
I
K −
L
N
M
M
O
Q
P
P
= v – T (^) HF∂∂TvIK
p
... Proved.
Also μ =


F
H
I
K
T
p h



F
H
I
K
h
pT = – cp^


F
H
I
K
T
p h.
(ii) Let u = f(T, v)
du =


F
H
I
K
u
T v^ dT +


F
H
I
K
u
vT^ dv
= cv dT +


F
H
I
K
u
vT^ dv ...(i)
Also du = Tds – pdv
Substituting the value of Tds [from eqn. 7.24], we get
du = cv dT + T


F
HG
I
KJ
p
T v^ dv – pdv
= cv dT + T
p
T v p


F
HG
I
KJ −
L
N
M
O
Q
P dv ...(ii)
From (i) and (ii), we get


F
H
I
K
u
vT = T^


F
HG
I
KJ
p
T v – p ...Proved.
Also


F
HG
I
KJ
u
pT =


F
H
I
K


F
HG
I
KJ
u
v
v
T p T
or


F
HG
I
KJ
u
pT =


F
HG
I
KJ


F
HG
I
KJ −
L
N
M
O
Q
P
v
p T
p
TvT p
or


F
HG
I
KJ
u
pT = T
p
T
v
vTp


F
HG
I
KJ


F
HG
I
KJ – p^


F
HG
I
KJ
v
pT
...Proved.

Free download pdf