860 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th16-1.pm5
Sol. Section 1 : Velocity of the gas, V = 300 m/s
Pressure, p 1 = 78 kN/m^2
Temperature, T 1 = 40 + 273 = 313 K
Section 2 : Pressure, p 2 = 117 kN/m^2
R = 287 J/kg K, γ = 1.4
Velocity of gas at section 2, V 2 :
Applying Bernoulli’s equations at sections 1 and 2 for adiabatic process, we have
γ
γρ−
F
HG
I
KJ
+
12
1
1
1
p^2
g
V
g = z^1 =
γ
γρ−
F
HG
I
KJ
+
12
2
2
2
p^2
g
V
g + z^2 [Eqn. (16.7)]
But z 1 = z 2 , since the pipe is horizontal.
∴
γ
γρ−
F
HG
I
KJ
+
12
1
1
1
p^2
g
V
g =
γ
γρ−
F
HG
I
KJ
+
12
2
2
2
p^2
g
V
g
Cancelling ‘g’ on both sides, we get
γ
γρρ−
F
HG
I
KJ
−
F
HG
I
KJ
=−
122
1
1
2
2
2
2
1
pp V V^2
or,
γ
γρ ρ
ρ
−
F
HG
I
KJ
−×
F
HG
I
KJ
=−
1
1
22
1
1
2
2
1
1
2
2
1
pp^2
p
VV
∴
γ
γρ
ρ
− ρ
F
HG
I
KJ
−×
F
HG
I
KJ
=−
1
1
22
1
1
2
1
1
2
pp 22 12
p
VV
...(i)
For an adiabatic flow :
p 1
ρ 1
γ =
p 2
ρ 2 γ
or
p
p
1
2
1
2
=
F
HG
I
KJ
ρ
ρ
γ
or
ρ
ρ
1 γ
2
1
2
1
=
F
HG
I
KJ
p
p
Substituting the value of
ρ
ρ
1
2
in eqn (i), we get
γ
γρ
γ
−
F
HG
I
KJ
−×
F
HG
I
KJ
R
S
|
T
|
U
V
|
W
(^1) |
(^11)
1
2
1
1
2
1
pp
p
p
p
VV 22 12
22
−
γ
γρ
γ
−
F
HG
I
KJ
−
F
HG
I
KJ
R
S
|
T
|
U
V
|
W
|
−
1
(^11)
1
2
1
1 1
pp
p =
VV 22 12
22
−
or,
γ
γρ
γ
γ
−
F
HG
I
KJ
−
F
HG
I
KJ
R
S
|
T
|
U
V
|
W
|
= −
−
1
1
2
1
1
2
1
1
pp 22 12
p
VV
...(ii)
At section 1 :
p 1
ρ 1
= RT 1 = 287 × 313 = 89831
p
p
2
1
117
78 = 1.5, and V^1 = 300 m/s