TITLE.PM5

(Ann) #1

860 ENGINEERING THERMODYNAMICS


dharm
\M-therm\Th16-1.pm5

Sol. Section 1 : Velocity of the gas, V = 300 m/s
Pressure, p 1 = 78 kN/m^2
Temperature, T 1 = 40 + 273 = 313 K
Section 2 : Pressure, p 2 = 117 kN/m^2
R = 287 J/kg K, γ = 1.4
Velocity of gas at section 2, V 2 :
Applying Bernoulli’s equations at sections 1 and 2 for adiabatic process, we have
γ
γρ−

F
HG

I
KJ

+
12

1
1

1
p^2
g

V
g = z^1 =

γ
γρ−

F
HG

I
KJ

+
12

2
2

2
p^2
g

V
g + z^2 [Eqn. (16.7)]
But z 1 = z 2 , since the pipe is horizontal.


γ
γρ−

F
HG

I
KJ
+
12

1
1

1
p^2
g

V
g =

γ
γρ−

F
HG

I
KJ
+
12

2
2

2
p^2
g

V
g
Cancelling ‘g’ on both sides, we get
γ
γρρ−

F
HG

I
KJ


F
HG

I
KJ

=−
122

1
1

2
2

2
2
1
pp V V^2

or,

γ
γρ ρ

ρ

F
HG

I
KJ

−×
F
HG

I
KJ

=−
1
1
22

1
1

2
2

1
1

2
2
1
pp^2
p

VV


γ
γρ

ρ
− ρ

F
HG

I
KJ

−×
F
HG

I
KJ

=−
1

1
22

1
1

2
1

1
2

pp 22 12
p

VV
...(i)

For an adiabatic flow :
p 1
ρ 1
γ =

p 2
ρ 2 γ
or
p
p

1
2

1
2

=
F
HG

I
KJ

ρ
ρ

γ
or
ρ
ρ

1 γ
2

1
2

1
=
F
HG

I
KJ

p
p

Substituting the value of

ρ
ρ

1
2

in eqn (i), we get

γ
γρ

γ

F
HG

I
KJ
−×
F
HG

I
KJ

R
S
|

T


|


U
V
|

W


(^1) |
(^11)
1
2
1
1
2
1
pp
p
p
p


VV 22 12
22

γ
γρ
γ

F
HG
I
KJ

F
HG
I
KJ
R
S
|
T
|
U
V
|
W
|

1
(^11)
1
2
1
1 1
pp
p =
VV 22 12
22

or,
γ
γρ
γ
γ

F
HG
I
KJ

F
HG
I
KJ
R
S
|
T
|
U
V
|
W
|
= −

1
1
2
1
1
2
1
1
pp 22 12
p
VV
...(ii)
At section 1 :
p 1
ρ 1
= RT 1 = 287 × 313 = 89831
p
p
2
1


117
78 = 1.5, and V^1 = 300 m/s

Free download pdf