COMPRESSIBLE FLOW 881dharm
\M-therm\Th16-2.pm5Relevant relations for critical density and temperature are :
ρ
ρ2
1=^2
11
1
γγ
+F
HGI
KJ−
...[16.30 (a)]T
T2
1=2
γ+ 1 ...[16.30 (b)]
Value of V 2 for maximum rate of flow of fluid :Substituting the value of
p
p2
1from eqn. (16.29) in eqn. (16.27), we getV 2 =
2
1
1 2
12
1
1 2
11
111
1
1γ
γρ γγ
γρ γγ
γγ
γ
−
−
+F
HGI
KJL
N
M
M
MO
Q
P
P
P=
−
−
+F
HGI
KJ− ×−
pp=^2
112
12
11
11
11
1γ
γργ
γγ
γργ
− γ+−
+F
HGI
KJ=
−−
+F
HGI
KJppor V 2 =2
11
1γ
γρ+p
(= C 2 ) ...(16.31)Maximum rate of flow of fluid through nozzle, mmax :Substituting the value ofp
p2
1from eqn. (16.30) in eqn. (16.28), we getmmax = A 22
12
12(^111)
1
2
1
1
γ
γ
ρ
γγ
γ
γγ
γ
γ
γ
γ
−
F
HG
I
KJ +
F
HG
I
KJ
−
- F
HG
I
KJ
L
N
M
M
M
O
Q
P
P
P - × − ×
p
= A 2
2
1
2
1
2
(^111)
2
1
1
γ^1
γ
ρ
γγ
γ
γ
γ
−
F
HG
I
KJ +
F
HG
I
KJ
−
F
HG
I
KJ
L
N
M
M
M
O
Q
P
P
P
−
−
p
For air, γ = 1.4,
∴ mmax = A 2
2
1
2
1
2
(^111)
2
1
1
×^1
−+
F
HG
I
KJ
−
F
HG
I
KJ
L
N
M
M
M
O
Q
P
P
P
−
1.4 −
1.4 1.4 1.4
1.4
1.4
1.4
()
pρ
= A 2 7 p 11 ρ (.0 4018 0 3348−. )
or mmax = 0.685 A 2 p 11 ρ ...(16.32)
Variation of mass flow rate of compressible fluid with pressure ratio p
p
2
1
F
HG
I
KJ
:
A passage in which the sonic velocity has been reached and thus in which the mass flow
rate is maximum, is often said to be choked or in choking conditions. It is evident from eqn.
(16.28) that for a fixed value of inlet pressure the mass flow depends on nozzle exit pressure.