Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

17.5 SUPERPOSITION OF EIGENFUNCTIONS: GREEN’S FUNCTIONS


Now, the boundary conditions require thatB=0andsin


(√


1
4 −λ

)


π=0,andso

1
4 −λ=n, wheren=0,±^1 ,±^2 ,....

Therefore, the independent eigenfunctions that satisfy the boundary conditions are


yn(x)=Ansinnx,

wherenis any non-negative integer, and the corresponding eigenvalues areλn=^14 −n^2.
The normalisation condition further requires
∫π


0

A^2 nsin^2 nx dx=1 ⇒ An=

(


2


π

) 1 / 2


.


Comparison with (17.51) shows that the appropriate Green’s function is therefore given
by


G(x, z)=

2


π

∑∞


n=0

sinnxsinnz
1
4 −n

2.


Case (i). Using (17.50), the solution withf(x)=sin2xis given by

y(x)=

2


π

∫π

0

(∞



n=0

sinnxsinnz
1
4 −n

2

)


sin 2zdz=

2


π

∑∞


n=0

sinnx
1
4 −n

2

∫π

0

sinnzsin 2zdz.

Now the integral is zero unlessn= 2, in which case it is
∫π


0

sin^22 zdz=

π
2

.


Thus


y(x)=−

2


π

sin 2x
15 / 4

π
2

=−


4


15


sin 2x

is the full solution forf(x)=sin2x. This is, of course, exactly the solution found by using
the methods of chapter 15.
Case (ii). The solution withf(x)=x/2isgivenby


y(x)=

∫π

0

(


2


π

∑∞


n=0

sinnxsinnz
1
4 −n

2

)


z
2

dz=

1


π

∑∞


n=0

sinnx
1
4 −n

2

∫π

0

zsinnz dz.

The integral may be evaluated by integrating by parts. Forn=0,
∫π


0

zsinnz dz=

[



zcosnz
n


0

+


∫π

0

cosnz
n

dz

=


−πcosnπ
n

+


[


sinnz
n^2


0

=−

π(−1)n
n

.


Forn= 0 the integral is zero, and thus


y(x)=

∑∞


n=1

(−1)n+1

sinnx
n

( 1


4 −n

2 ),


is the full solution forf(x)=x/2. Using the methods of subsection 15.1.2, the solution
is found to bey(x)=2x− 2 πsin(x/2), which may be shown to be equal to the above
solution by expanding 2x− 2 πsin(x/2) as a Fourier sine series.

Free download pdf