Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

EIGENFUNCTION METHODS FOR DIFFERENTIAL EQUATIONS


17.6 A useful generalisation

Sometimes we encounter inhomogeneous equations of a form slightly more gen-


eral than (17.1), given by


Ly(x)−μρ(x)y(x)=f(x) (17.53)

for some Hermitian operatorL, withysubject to the appropriate boundary


conditions andμa given (i.e.fixed) constant. To solve this equation we expand


y(x)andf(x) in terms of the eigenfunctionsyn(x) of the operatorL, which satisfy


Lyn(x)=λnρ(x)yn(x).

Working in terms of the normalised eigenfunctionsyˆn(x), we first expandf(x)

as follows:


f(x)=

∑∞

n=0

yˆn(x)

∫b

a

yˆ∗n(z)f(z)ρ(z)dz

=

∫b

a

ρ(z)

∑∞

n=0

yˆn(x)yˆ∗n(z)f(z)dz. (17.54)

Using (17.29) this becomes


f(x)=

∫b

a

ρ(x)

∑∞

n=0

ˆyn(x)yˆn∗(z)f(z)dz

=ρ(x)

∑∞

n=0

yˆn(x)

∫b

a

yˆ∗n(z)f(z)dz. (17.55)

Next, we expandy(x)asy=


∑∞
n=0cnyˆn(x) and seek the coefficientscn. Substituting
this and (17.55) into (17.53) we have


ρ(x)

∑∞

n=0

(λn−μ)cnˆyn(x)=ρ(x)

∑∞

n=0

yˆn(x)

∫b

a

yˆ∗n(z)f(z)dz,

from which we find that


cn=

∑∞

n=0

∫b
aˆy


n(z)f(z)dz
λn−μ

.

Hence the solution of (17.53) is given by


y=

∑∞

n=0

cnyˆn(x)=

∑∞

n=0

yˆn(x)
λn−μ

∫b

a

ˆy∗n(z)f(z)dz=

∫b

a

∑∞

n=0

yˆn(x)yˆn∗(z)
λn−μ

f(z)dz.

From this we may identify the Green’s function


G(x, z)=

∑∞

n=0

yˆn(x)yˆ∗n(z)
λn−μ

.
Free download pdf