Understanding Engineering Mathematics

(やまだぃちぅ) #1
=

−(tan 45°+tan 30°)
1 −tan 45°tan 30°

=−

(
1 +

1

3

)

(
1 −

1

3

)=
1 +


3
1 −


3

=− 2 +


3 ( 21


)

D. From cos(A+B)=cosAcosB−sinAsinB, withA=Bwe get


cos 2A=cos^2 A−sin^2 A

Using sin^2 A+cos^2 A=1 this can be expressed in two alternative
forms:
cos 2A=2cos^2 A− 1
= 1 −2sin^2 A

E. (i) Using cos 2θ=^1 −2sin^2 θ

cos 30°= 1 −2sin^215 °

so sin^215 °=

1
2

( 1 −cos 30°)

=

1
2

(
1 −


3
2

)

=

2 −


3
4

so sin 15°=


2 −


3
2

(ii) tan 2A=

2tanA
1 −tan^2 A

withA= 15 °gives

tan 30°=

1

3

=

2tan15°
1 −tan^215 °

=

2 x
1 −x^2
wherex=tan 15°
So 1−x^2 = 2


3 x
orx^2 + 2


3 x− 1 =0 giving

x=

− 2


3 ±


4 × 3 + 4
2

=

− 2


3 ± 4
2
= 2 −


3 (tan 15°is positive)
Free download pdf