=−(tan 45°+tan 30°)
1 −tan 45°tan 30°=−(
1 +1
√
3)(
1 −1
√
3)=
1 +√
3
1 −√
3=− 2 +√
3 ( 21➤
)D. From cos(A+B)=cosAcosB−sinAsinB, withA=Bwe get
cos 2A=cos^2 A−sin^2 AUsing sin^2 A+cos^2 A=1 this can be expressed in two alternative
forms:
cos 2A=2cos^2 A− 1
= 1 −2sin^2 AE. (i) Using cos 2θ=^1 −2sin^2 θcos 30°= 1 −2sin^215 °so sin^215 °=1
2( 1 −cos 30°)=1
2(
1 −√
3
2)=2 −√
3
4so sin 15°=√
2 −√
3
2(ii) tan 2A=2tanA
1 −tan^2 AwithA= 15 °givestan 30°=1
√
3=2tan15°
1 −tan^215 °=2 x
1 −x^2
wherex=tan 15°
So 1−x^2 = 2√
3 x
orx^2 + 2√
3 x− 1 =0 givingx=− 2√
3 ±√
4 × 3 + 4
2=− 2√
3 ± 4
2
= 2 −√
3 (tan 15°is positive)