B. (i) sin(A−B)=sin(A+(−B))
=sinAcos(−B)+sin(−B)cosA
=sinAcosB−sinBcosA
on using
cos(−x)=cosxand sin(−x)=−sinx
(ii) The result for cos(A−B)may now be obtained using comple-
mentary angles (149
➤
):
cos(A−B)=sin( 90 −(A−B))
=sin( 90 −A+B)
=sin( 90 −A)cosB+cos( 90 −A)sinB
=cosAcosB+sinAsinB
Or, perhaps quicker, simply differentiate (➤233) the result for
sin(A−B)with respect toB– a common trick for obtaining ‘cos-
results’ from ‘sin-results’.
(iii) The result for tan(A+B)can be obtained by division:
tan(A+B)=
sin(A+B)
cos(A+B)
=
sinAcosB+sinBcosA
cosAcosB−sinAsinB
=
tanA+tanB
1 −tanAtanB
on dividing top and bottom by cosAcosB.
The key point here is that whilecertainresults have to be second
nature to you, such as the expansion of sin(A+B),itisjustas
important that you know how to derive others from them, rather
than have to remember all the identities.
C.Here we make good use of the compound angle formulae
(i) cos 75°=cos( 45 °+ 30 °)
=cos 45°cos 30°−sin 45°sin 30°
=
1
√
2
√
3
2
−
1
√
2
1
2
=(
√
3 − 1 )
√
2
4
(ii) sin 105°=sin( 60 °+ 45 °)
=sin 60°cos 45°+sin 45°cos 60°
=
√
3
2
1
√
2
+
1
√
2
1
2
=
√
3 + 1
2
√
2
=
(
√
3 + 1 )
√
2
4
(iii) tan(− 75 °)=−tan 75°
=−tan( 45 °+ 30 °)