Understanding Engineering Mathematics

(やまだぃちぅ) #1

9.1.6 Thedu=f′.x/dxsubstitution ➤263 282➤➤


Integrate the following functions by means of an appropriate substitution.


(i)

x+ 1
x^2 + 2 x+ 3

(ii) xsin(x^2 + 1 ) (iii) cosxesinx (iv) sinxcosx


  1. Compare the results of (iv) with that of Q9.1.8(iv). Are the answers the same? Explain.


9.1.7 Integrating rational functions ➤265 283➤➤


A.Find



dx
x^2 +x− 2

using partial fractions.

B. Find



dx
x^2 + 2 x+ 2

, given that


dx
x^2 + 1

=tan−^1 x.

C.Find



2 x^2 + 5 x+ 4
x^2 + 2 x+ 2

dx

Hint: divide out first and think about Q9.1.6 andBimmediately above.

D.Integrate


(i)

1
x^2 +x+ 1

(ii)

1
x^2 + 3 x+ 2

(iii)

2 x+ 1
x^2 +x− 1

(iv)

3 x
(x− 1 )(x+ 1 )

9.1.8 Using trig identities in integration ➤269 283➤➤


Integrate the following functions using appropriate trig identities.


(i) sin^2 x (ii) cos^3 x (iii) sin 2xcos 3x
(iv) sinxcosx


  1. Cf (iv) with Q9.1.6(iv) – are the answers the same?


9.1.9 Using trig substitutions in integration ➤272 283➤➤


Integrate


(i)

1

9 −x^2

(ii)

1

3 − 2 x−x^2

9.1.10 Integration by parts ➤273 283➤➤


Integrate by parts


(i) xsinx (ii) x^2 ex (iii) exsinx
Free download pdf