9.3.11 Choice of integration methods
➤➤
253 276
➤
A.From the following three methods of integration:
A standard integral
B substitution
C integration by parts
state which you would use to evaluate the following integrals:
(i)
∫
2 exdx (ii)
∫
xexdx (iii)
∫
xex
2
dx
(iv)
∫
xcos(x^2 )dx (v)
∫
secxtanxdx (vi)
∫
sec^2 xtanxdx
B. Choose from
A partial fractions
B completing the square
C substitution
the methods (in the order in which you would use them) you would use to integrate
(i)
1
x^2 +x+ 1
(ii)
1
x^2 +x− 2
(iii)
2 x+ 1
x^2 +x− 1
(iv)
4 x+ 12
√
x^2 + 6 x+ 6
(v)
1
√
7 − 6 x−x^2
(vi)
2
x^2 + 2 x+ 1
C.Integrate the integrals in Review Question 9.1.11.
9.3.12 The definite integral
➤➤
253 278
➤
A.Evaluate
(i)
∫ 1
0
x^2 dx (ii)
∫π/ 2
0
xcosxdx (iii)
∫ 1
0
x^2
√
x^3 + 1
dx
(iv)
∫ 1
0
x
(x+ 1 )(x+ 2 )
dx (v)
∫ 1
0
xexdx
B.Iff(x)is an even function andg(x)is an odd function, show that
(i)
∫a
−a
f(x)dx= 2
∫a
0
f(x)dx (ii)
∫a
−a
g(x)dx= 0