Understanding Engineering Mathematics

(やまだぃちぅ) #1

19.Simplify (i)( 1 +j



3 )^6 +( 1 −j


3 )^6 and (ii) (


3 −j)^15 by using De Moivre’s
theorem.

20.Simplify
(cos 3θ−jsin 3θ)−^3 (cos 2θ+jsin 2θ)^4
(cos 7θ+jsin 7θ)^5 (cos 5θ−jsin 5θ)−^4


21.Determine all the roots in each case:


(i) Square roots of 1 (ii) Square roots of− 1
(iii) Square roots ofj (iv) Cube roots of−j
(v) Square roots of( 1 +j) (vi) Square roots of 1+


3 j
(vii) Fourth roots of 1−j (viii) Fourth roots of


3 +j

22.Find the values ofzsatisfying


z^4 + 1 = 0

23.Simplify each of the following numbers to thea+jbform:


(i)

cos 4α+jsin 4α
cos 3α−jsin 3α

(ii)

1
sin 2α+jcos 2α

(iii)

cos 2α−jsin 2α
sin 3α+jcos 3α

24.Find the polar forms of the fourth roots of−16 and indicate the results on the Argand
diagram.


12.10 Applications


1.Ify=AejαtwhereAandαare constants, show that


d^2 y
dt^2

+α^2 y=0. By assuming a
solution of the formy=eλt, find solutions for the differential equation

d^2 y
dt^2

+ 2

dy
dt

+ 2 y= 0

by obtaining an equation forλ. This is the approach we will follow in Chapter 15.


  1. (i) By equating the real parts of cos 5θ+jsin 5θ=(cosθ+jsinθ)^5 show that
    cos 5θ=16 cos^5 θ−20 cos^3 θ+5cosθ. Also express sin 5θas powers of sinθ.


(ii) By using sinθ=

ejθ−(ejθ)−^1
2 j

and cosθ=

ejθ+(ejθ)−^1
2

express in terms of

sines and cosines of multiple angles (a) sin^4 θ,(b)cos^5 θ.Use(a)toevaluate
∫π/ 3

0

sin^4 θdθ.

(iii) Write cosθ=R(ejθ)and hence sum the series cosθ+cos 2θ+···+cosnθ.
Free download pdf