So we get
πbm=∫π−πf(t)sinmtdt=∫ 0−π(−A)sinmtdt+∫π0Asinmtdt=A[
cosmt
m] 0−π−A[
cosmt
m]π0=A
m( 1 −(− 1 )m)−A
m((− 1 )m− 1 )(cosmπ=(− 1 )m)=2 A
m( 1 −(− 1 )m)Note that sincef(t)is odd we could have used (284
➤
)
∫π
−πf(t)sinmtdt= 2∫π0f(t)sinmtdtSo finally
bm=2 A
mπ( 1 −(− 1 )m)=0ifmeven=4 A
mπifmoddor, reverting ton
bn=2 A
nπ( 1 −(− 1 )n)Theseriesisthus
f(t)=∑∞n= 1bnsinnt=∑∞n= 12 A
nπ( 1 −(− 1 )n)sinnt=4 A
πsint+4 A
3 πsin 3t+4 A
5 πsin 5t+···=4 A
π(
sint+1
3sin 3t+1
5sin 5t+···)Exercise on 17.10
Verify the series given in Exercise on 17.9 for the triangular wave
f(t)=t 0 <t<π
−t −π<t< 0
f(t)=f(t+ 2 π)