So we get
πbm=
∫π
−π
f(t)sinmtdt
=
∫ 0
−π
(−A)sinmtdt+
∫π
0
Asinmtdt
=A
[
cosmt
m
] 0
−π
−A
[
cosmt
m
]π
0
=
A
m
( 1 −(− 1 )m)−
A
m
((− 1 )m− 1 )
(cosmπ=(− 1 )m)
=
2 A
m
( 1 −(− 1 )m)
Note that sincef(t)is odd we could have used (284
➤
)
∫π
−π
f(t)sinmtdt= 2
∫π
0
f(t)sinmtdt
So finally
bm=
2 A
mπ
( 1 −(− 1 )m)
=0ifmeven
=
4 A
mπ
ifmodd
or, reverting ton
bn=
2 A
nπ
( 1 −(− 1 )n)
Theseriesisthus
f(t)=
∑∞
n= 1
bnsinnt=
∑∞
n= 1
2 A
nπ
( 1 −(− 1 )n)sinnt
=
4 A
π
sint+
4 A
3 π
sin 3t+
4 A
5 π
sin 5t+···
=
4 A
π
(
sint+
1
3
sin 3t+
1
5
sin 5t+···
)
Exercise on 17.10
Verify the series given in Exercise on 17.9 for the triangular wave
f(t)=t 0 <t<π
−t −π<t< 0
f(t)=f(t+ 2 π)