Understanding Engineering Mathematics

(やまだぃちぅ) #1

So we get


πbm=

∫π

−π

f(t)sinmtdt

=

∫ 0

−π

(−A)sinmtdt+

∫π

0

Asinmtdt

=A

[
cosmt
m

] 0

−π

−A

[
cosmt
m


0

=

A
m

( 1 −(− 1 )m)−

A
m

((− 1 )m− 1 )

(cosmπ=(− 1 )m)

=

2 A
m

( 1 −(− 1 )m)

Note that sincef(t)is odd we could have used (284

)
∫π


−π

f(t)sinmtdt= 2

∫π

0

f(t)sinmtdt

So finally


bm=

2 A

( 1 −(− 1 )m)

=0ifmeven

=

4 A

ifmodd

or, reverting ton


bn=

2 A

( 1 −(− 1 )n)

Theseriesisthus


f(t)=

∑∞

n= 1

bnsinnt=

∑∞

n= 1

2 A

( 1 −(− 1 )n)sinnt

=

4 A
π

sint+

4 A
3 π

sin 3t+

4 A
5 π

sin 5t+···

=

4 A
π

(
sint+

1
3

sin 3t+

1
5

sin 5t+···

)

Exercise on 17.10


Verify the series given in Exercise on 17.9 for the triangular wave


f(t)=t 0 <t<π
−t −π<t< 0
f(t)=f(t+ 2 π)
Free download pdf