476 Nonlinear Programming III: Constrained Optimization Techniques
-0.0000
-0.0000
-3.5858
0
-1.4142
-1.4142
ceq =
[]
References and Bibliography
7.1 R. L. Fox,Optimization Methods for Engineering Design, Addison-Wesley, Reading, MA,
1971.
7.2 M. J. Box, A new method of constrained optimization and a comparison with other
methods,Computer Journal, Vol. 8, No. 1, pp. 42–52, 1965.
7.3 E. W. Cheney and A. A. Goldstein, Newton’s method of convex programming and
Tchebycheff approximation,Numerische Mathematik, Vol. 1, pp. 253–268, 1959.
7.4 J. E. Kelly, The cutting plane method for solving convex programs,Journal of SIAM,
Vol. VIII, No. 4, pp. 703–712, 1960.
7.5 G. Zoutendijk,Methods of Feasible Directions, Elsevier, Amsterdam, 1960.
7.6 W.W. Garvin,Introduction to Linear Programming, McGraw-Hill, New York, 1960.
7.7 S. L. S. Jacoby, J. S. Kowalik, and J. T. Pizzo,Iterative Methods for Nonlinear Optimiza-
tion Problems, Prentice Hall, Englewood Cliffs, NJ, 1972.
7.8 G. Zoutendijk, Nonlinear programming: a numerical survey,SIAM Journal of Control
Theory and Applications, Vol. 4, No. 1, pp. 194–210, 1966.
7.9 J. B. Rosen, The gradient projection method of nonlinear programming, Part I: linear
constraints,SIAM Journal, Vol. 8, pp. 181–217, 1960.
7.10 J. B. Rosen, The gradient projection method for nonlinear programming, Part II: nonlinear
constraints,SIAM Journal, Vol. 9, pp. 414–432, 1961.
7.11 G. A. Gabriele and K. M. Ragsdell, The generalized reduced gradient method: a reliable
tool for optimal design,ASME Journal of Engineering for Industry, Vol. 99, pp. 384–400,
1977.
7.12 M. J. D. Powell, A fast algorithm for nonlinearity constrained optimization calculations,
inLecture Notes in Mathematics, G. A. Watson et al., Eds., Springer-Verlag, Berlin,
1978.
7.13 M. J. Box, A comparison of several current optimization methods and the use of trans-
formations in constrained problems,Computer Journal, Vol. 9, pp. 67–77, 1966.
7.14 C. W. Carroll, The created response surface technique for optimizing nonlinear restrained
systems,Operations Research, Vol. 9, pp. 169–184, 1961.
7.15 A. V. Fiacco and G. P. McCormick,Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, Wiley, New York, 1968.
7.16 W. I. Zangwill, Nonlinear programming via penalty functions,Management Science, Vol.
13, No. 5, pp. 344–358, 1967.
7.17 A. V. Fiacco and G. P. McCormick, Extensions of SUMT for nonlinear program-
ming: equality constraints and extrapolation,Management Science, Vol. 12, No. 11,
pp. 816–828, July 1966.