512 Geometric Programming
Table 8.2 Corresponding Primal and Dual Programs
Primal program Dual programFindX=
x 1
x 2
..
.
xn
so thatg 0 (X)≡f (X)→minimumsubject to the constraints
x 1 > 0
x 2 > 0
..
.
xn> 0 ,
g 1 (X)≤ 1
g 2 (X)≤ 1
..
.
gm(X)≤ 1 ,Findλ=
λ 01
λ 02
..
.
λ 0 N 0
· · ·
λ 11
λ 12
..
.
λ 1 N 1
· · ·
..
.
·· ·
λm 1
λm 2
..
.
λmN m
so thatv(λ)=∏m
k= 0N∏k
j= 1(
ckj
λkj∑Nkl= 1λkl)λkj→ maximumwith subject to the constraintsg 0 (X)=∑N^0j= 1c 0 jx
a 01 j
1 xa 02 j
2 ·· ·xa 0 jn
ng 1 (X)=∑N^1j= 1c 1 jx
a 11 j
1 xa 12 j
2 ·· ·xa 1 jn
ng 2 (X)=∑N^2j= 1c 2 jx
a 21 j
1 xa 22 j
2 ·· ·xa 2 jn
n..
.gm(X)=∑Nmj= 1cmjx
am 1 j
1 xam 2 j
2 ·· ·xamnj
nλ 01 ≥ 0
λ 02 ≥ 0
..
.
λ 0 N 0 ≥ 0
λ 11 ≥ 0
..
.
λ 1 N 1 ≥ 0
..
.
λm 1 ≥ 0
λm 2 ≥ 0
..
.
λmNm≥ 0
(continues)