8.9 Primal and Dual Programs in the Case of Less-Than Inequalities 513
Table 8.2 (continued)
Primal program Dual program
the exponentsakijare real numbers, and
the coefficientsckjare positive numbers.
∑N^0
j= 1
λ 0 j= 1
∑m
k= 0
∑Nk
j= 1
akijλkj= 0 , i= 1 , 2 ,... , n
the factorsckjare positive, and the
coefficientsakijare real numbers.
Terminology
g 0 =f=primal function
x 1 , x 2 ,... , xn=primal variables
gk≤1 are primal constraints
(k= 1 , 2 ,... , m)
xi> 0 , i= 1 , 2 ,... , npositive restrictions.
n=number of primal variables
m=number of primal constriants
N=N 0 +N 1 + · · · +Nm=total number
of terms in the posynomials
N−n− 1 =degree of difficulty of the
problem
ν=dual function
λ 01 , λ 02 ,... , λmN m=dual variables
∑N^0
j= 1
λ 0 j= 1 is the normality constraint
∑m
k= 0
N∑k
j= 1
akijλkj= 0 , i= 1 , 2 ,... , nare the
orthogonality constraints
λkj≥ 0 , j= 1 , 2 ,... , Nk;
k= 0 , 1 , 2 ,... , m
are nonnegativity restrictions
N=N 0 +N 1 + · · · +Nm
=number of dual variables
n+1 number of dual constraints
v(λ)=
∏^1
k= 0
∏Nk
j= 1
(
ckj
λkj
∑Nk
l= 1
λkl
)λkj
=
N∏ 0 = 3
j= 1
c^0 j
λ 0 j
N∑ 0 = 3
l= 1
λ 0 l
λ 0 jN
∏^1 =^1
j= 1
(
c 1 j
λ 1 j
N∑ 1 = 1
l= 1
λ 1 l
)λ 1 j
=
[
c 01
λ 01
(λ 01 +λ 02 +λ 03 )
]λ 01 [
c 02
λ 02
(λ 01 +λ 02 +λ 03 )
]λ 02
·
[
c 03
λ 03
(λ 01 +λ 02 +λ 03 )
]λ 03 (
c 11
λ 11
λ 11
)λ 11
(E 1 )
subject to the constraints
λ 01 +λ 02 +λ 03 = 1
a 011 λ 01 +a 012 λ 02 +a 013 λ 03 +a 111 λ 11 = 0