8.9 Primal and Dual Programs in the Case of Less-Than Inequalities 515λ∗ 03 =c 03 (x 1 ∗)^13 a^0 (x 2 ∗)^23 a^0 (x∗ 3 )a^330
x 0 ∗1
3 =80 (x∗ 1 )(x 2 ∗)
480=
x 1 ∗x∗ 2
6(E 7 )
λ∗ 11
λ∗ 11=c 11 (x∗ 1 )^11 a^1 (x 2 ∗)^21 a^1 (x 3 ∗)a^3111 = 8 (x 1 ∗)−^1 (x 2 ∗)−^1 (x∗ 3 )−^1 =8
x∗ 1 x∗ 2 x∗ 3(E 8 )
Equations(E 5 ) o (Et 8 ) iveg
x∗ 1 = 2 , x∗ 2 = 1 , x∗ 3 = 4Example8.4 One-degree-of-difficulty Problem
Minimizef=x 1 x 22 x 3 −^1 + 2 x 1 −^1 x 2 −^3 x 4 + 01 x 1 x 3subject to
3 x 1 −^1 x 3 x 4 −^2 + 4 x 3 x 4 ≤ 15 x 1 x 2 ≤ 1SOLUTION HereN 0 = , 3 N 1 = , 2 N 2 = , 1 N=6,n=4,m=2, and the degree
of difficulty of this problem isN−n− 1 =1. The dual problem can be stated as
follows:
Maximixzev(λ)=∏mk= 0∏Nkj= 1(
ckj
λkj∑Nkl= 1λkl)λkjsubjectto
∑N^0j= 1λ 0 j= 1∑mk= 0∑Nkj= 1akijλkj= 0 , i= 1 , 2 ,... , n∑Nkj= 1λkj≥ 0 , k= 1 , 2 ,... , m(E 1 )
Asc 01 = , 1 c 02 = , 2 c 03 = 0, 1 c 11 = , 3 c 12 = , 4 c 21 = , 5 a 011 = , 1 a 021 = , 2 a 031 =
− 1 ,a 041 = , 0 a 012 = − 1 ,a 022 = − 3 ,a 032 = , 0 a 042 = , 1 a 013 = , 1 a 023 = , 0 a 033 =
1 ,a 043 = , 0 a 111 = − 1 ,a 121 = , 0 a 131 = , 1 a 141 = − 2 ,a 112 = , 0 a 122 = , 0 a 132 = , 1