514 Geometric Programming
a 021 λ 01 +a 022 λ 02 +a 023 λ 03 +a 121 λ 11 = 0
a 031 λ 01 +a 032 λ 02 +a 033 λ 03 +a 131 λ 11 = 0 (E 2 )
λ 0 j≥ 0 , j= 1 , 2 , 3
λ 11 ≥ 0
In this problem,c 01 = 0, 2 c 02 = 0, 4 c 03 = 0, 8 c 11 = , 8 a 011 = , 1 a 021 = , 0 a 031 = , 1
a 012 ,= 0 a 022 = , 1 a 032 = , 1 a 013 = , 1 a 023 = , 1 a 033 = , 0 a 111 = − 1 ,a 121 = − 1 , and
a 131 = − 1. Hence Eqs. (E 1 ) nd (Ea 2 ) ecomeb
v(λ)=
[
20
λ 01
(λ 01 +λ 02 +λ 03 )
]λ 01 [
40
λ 02
(λ 01 +λ 02 +λ 03 )
]λ 02
×
[
80
λ 03
(λ 01 +λ 02 +λ 03 )
]λ 03 (
8
λ 11
λ 11
)λ 11
(E 3 )
subjectto
λ 01 +λ 02 +λ 03 = 1
λ 01 +λ 03 −λ 11 = 0
λ 02 +λ 03 −λ 11 = 0 (E 4 )
λ 01 +λ 02 −λ 11 = 0
λ 01 ≥ 0 , λ 02 ≥ 0 , λ 03 ≥ 0 , λ 11 ≥ 0
The four linear equations in Eq. (E 4 ) ield the unique solutiony
λ∗ 01 =λ∗ 02 =λ∗ 03 =^13 , λ∗ 11 =^23
Thus the maximum value ofvor the minimum value ofx 0 is given by
v∗=x∗ 0 0 =( 6 )^1 /^3 ( 201 )^1 /^3 ( 402 )^1 /^3 ( 8 )^2 /^3
= [( 60 )^3 ]^1 /^3 ( 8 )^1 /^3 ( 8 )^2 /^3 = 0 ( 6 )( 8 )= 480
The values of the design variables can be obtained by applying Eqs. (8.62) and (8.63)
as
λ∗ 01 =
c 01 (x∗ 1 )^11 a^0 (x 2 ∗)^21 a^0 (x 3 ∗)a^310
x∗ 0
1
3 =
20 (x 1 ∗)(x 3 ∗)
480
=
x 1 ∗x 3 ∗
24
(E 5 )
λ∗ 02 =
c 02 (x∗ 1 )^12 a^0 (x 2 ∗)^22 a^0 (x 3 ∗)a^320
x∗ 0
1
3 =
40 (x 2 ∗)(x 3 ∗)
480
=
x 2 ∗x 3 ∗
12