SECTION 5.1 Quick Survey of Limits 255
The definitions of these improper integrals are in terms of limits.
For example
∫∞
0 f(x)dx = limb→∞∫b
a f(x)dx
∫∞
−∞f(x)dx = a→−∞lim∫ 0
a f(x)dx+ limb→∞∫b
0 f(x)dx.Likewise, for example,
∫ 1
0dx
xp= lim
a→ 0 +∫ 1
adx
xp,
∫ 3
1dx
x− 2
= lima→ 2 −∫a
1dx
x− 2
+ limb→ 2 +∫ 3
bdx
x− 2.
Relative to the above definition, the following is easy.Theorem. We have
∫∞
1dx
xp=
1
p− 1ifp > 1∞ ifp≤ 1..
Proof. We have, ifp 6 = 1, that
∫∞
1dx
xp= lima→∞x^1 −p
1 −p∣∣
∣∣
∣a
1= lima→∞Ñ
a^1 −p
1 −p−
1
1 −pé=
1
p− 1
ifp > 1
∞ ifp < 1.Ifp= 1, then
∫∞
1dx
x= lima→∞lnx∣∣
∣∣
∣a
1= lima→∞lna = ∞.Example. Compute the improper integral
∫∞
2dx
xlnpx, where p >1.