Advanced High-School Mathematics

(Tina Meador) #1

256 CHAPTER 5 Series and Differential Equations


This is a fairly simple integration: using the substitution (u= lnx) one
first computes the indefinite integral


∫ dx
xlnpx

=

1

(1−p)xlnpx

.

Therefore,


∫∞
2

dx
xlnpx

= lima→∞

Ñ
1
(1−p)xlnpx

é∣
∣∣
∣∣

a
2

=

1

2(1−p) lnp 2

.

Exercises



  1. For each improper integral below, compute its value (which might
    be±∞) or determine that the integral does not exist.


(a)

∫∞
2

dx

x− 2

(b)

∫ 1
− 1

dx

1 −x^2
(c)

∫∞
2
√ dx
x^2 − 4
(d)

∫ 1
0 lnxdx


  1. Letk≥1 andp >1 and prove that


∫∞
1 sin

k

( 2 π

xp

)
dx <∞.(Hint:

note that ifxp>4 then sink

(
2 π
xp

)
≤sin

(
2 π
xp

)
<
2 π
xp

.)


  1. Compute
    xlim→∞


∫∞
0 e

−tcos(xt)dt.


  1. LetA, B be constants,A >0. Show that
    ∫∞
    0 e


−AtsinBtdt= B
A^2 +B^2

.


  1. Define the function


Π(x) =





1 if|x|≤^12 ,
0 otherwise.
Free download pdf